首页> 外文OA文献 >Stability of generalized linear Weingarten hypersurfaces immersed in the Euclidean space
【2h】

Stability of generalized linear Weingarten hypersurfaces immersed in the Euclidean space

机译:浸入欧氏空间的广义线性Weingarten超曲面的稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given a positive function F defined on the unit Euclidean sphere and satisfying a suitable convexity condition, we consider, for hypersurfaces Mn immersed in the Euclidean space Rn+1, the so-called k-th anisotropic mean curvatures HF k, 0 ≤ k ≤ n. For fixed 0 ≤ r ≤ s ≤ n, a hypersurface Mn of Rn+1 is said to be (r, s, F)-linear Weingarten when its k-th anisotropic mean curvatures HF k, r ≤ k ≤ s, are linearly related. In this setting, we establish the concept of stability concerning closed (r, s, F)-linear Weingarten hypersurfaces  immersed in Rn+1 and, afterwards, we prove that such a hypersurface is stable if, and only if, up to translations and homotheties, it is the Wulff shape of F. For r = s and F ≡ 1, our results amount to the standard stability studied, for instance, by Alencar–do Carmo–Rosenberg.
机译:给定在单位欧几里得球上定义的正函数F并满足适当的凸度条件,我们考虑对于浸在欧几里德空间Rn + 1中的超曲面Mn,所谓的第k个各向异性平均曲率HF k,0≤k≤ 。对于固定的0≤r≤s≤n,当其第k个各向异性平均曲率HF k,r≤k≤s线性时,Rn + 1的超表面Mn被称为(r,s,F)线性Weingarten有关。在这种情况下,我们建立了浸入Rn + 1的封闭(r,s,F)线性Weingarten超曲面的稳定性概念,此后,我们证明这种超曲面在且仅当且仅当平移和相似,它是F的Wulff形状。对于r = s和F≡1,我们的结果等于标准稳定性的研究,例如,由Alencar–do Carmo–Rosenberg研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号