首页> 外文OA文献 >Stochastic spatio-temporal models for analysing NDVI distribution of GIMMS NDVI3g images
【2h】

Stochastic spatio-temporal models for analysing NDVI distribution of GIMMS NDVI3g images

机译:用于分析GIMMS NDVI3g图像的NDVI分布的随机时空模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The normalized difference vegetation index (NDVI) is an important indicator for evaluating vegetation change, monitoring land surface fluxes or predicting crop models. Due to the great availability of images provided by different satellites in recent years, much attention has been devoted to testing trend changes with a time series of NDVI individual pixels. However, the spatial dependence inherent in these data is usually lost unless global scales are analyzed. In this paper, we propose incorporating both the spatial and the temporal dependence among pixels using a stochastic spatio-temporal model for estimating the NDVI distribution thoroughly. The stochastic model is a state-space model that uses meteorological data of the Climatic Research Unit (CRU TS3.10) as auxiliary information. The model will be estimated with the Expectation-Maximization (EM) algorithm. The result is a set of smoothed images providing an overall analysis of the NDVI distribution across space and time, where fluctuations generated by atmospheric disturbances, fire events, land-use/cover changes or engineering problems from image capture are treated as random fluctuations. The illustration is carried out with the third generation of NDVI images, termed NDVI3g, of the Global Inventory Modeling and Mapping Studies (GIMMS) in continental Spain. This data are taken in bymonthly periods from January 2011 to December 2013, but the model can be applied to many other variables, countries or regions with different resolutions.
机译:归一化植被指数(NDVI)是评估植被变化,监测地表通量或预测作物模型的重要指标。由于近年来由不同卫星提供的图像的可用性很高,因此已将大量注意力投入到使用NDVI单个像素的时间序列测试趋势变化。但是,除非分析了全球范围,否则这些数据固有的空间依赖性通常会丢失。在本文中,我们建议使用随机时空模型结合像素之间的时空依赖性,以全面估计NDVI分布。随机模型是一种状态空间模型,它使用气候研究单位(CRU TS3.10)的气象数据作为辅助信息。该模型将使用期望最大化(EM)算法进行估算。结果是一组平滑的图像,提供了对NDVI跨时空分布的整体分析,其中将由大气干扰,火灾,土地利用/覆盖变化或图像捕获引起的工程问题产生的波动视为随机波动。插图是使用第三代NDVI图像(称为NDVI3g)进行的,该图像来自西班牙大陆的全球清单建模和制图研究(GIMMS)。该数据是从2011年1月到2013年12月的每个月获取的,但是该模型可以应用于许多其他变量,具有不同分辨率的国家或地区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号