Desde los inicios de la revolución microelectrónica, su evolución tecnológica siempre se ha visto marcada por la búsqueda constante de dispositivos y sistemas electrónicos monolíticos más compactos, fiables y robustos, ofreciendo mejores prestaciones y funcionalidades a un coste razonable. Ello no sólo ha permitido su uso para complementar o sustituir en muchas aplicaciones a otros sistemas basados en elementos mecánicos, electromecánicos, hidráulicos, y neumáticos (sistemas de comunicación, more electric aircrafts o tracción ferroviaria), sino que también ha dado lugar a nuevos conceptos o campos de aplicación (internet of things o vehiculos autónomos) afrontando retos sociales. Todo ello ha conllevado ciertos contratiempos relacionados con los procesos de fabricación, fiabilidad, y caracterización de dispositivos y sistemas electrònicos monolíticos, superados gracias al acceso al xip ofrecido por los pads de interconexión. No obstante, la accesibilidad local a todo el chip no es posible externamente, y esta situación se ha visto agravada por la alta capacidad de integración monolítica actual. En este escenario, la caracterización externa no invasiva local mediante técnicas de imagen se ha convertido en una solución muy prometedora. Esta tesis doctoral propone estudiar térmicamente la superficie de dispositivos o sistemas microelectrónicos mediante un sistema de termografía infrarroja (TIR) por imagen aplicando estrategias de detección lock-in. Cuando se modulan fuentes de calor en frecuencia, la detección lock-in mejora ostensiblemente la sensibilidad del sistema (por debajo de los niveles de ruido de la cámara infrarroja) y, en función del tipo de modulación y su frecuencia, sin influencia alguna de las condiciones de contorno ni de los efectos de "desenfoque" (blurring effects) debidos a la propagación de calor (heat spreading effect). En consecuencia, la monitorización local de fuentes débiles de calor es factible a nivel chip, no tan sólo para realizar análisis de fallos (principal tendencia en el estado del arte), sino que también para la caracterización local eléctrica en frecuencia, extracción de figuras de mérito, o determinación de parámetros físicos de un dispositivo o sistema integrado (novedad propuesta en esta tesis doctoral). Así, se proporciona una alternativa i un enfoque novedoso para la caracterización local a nivel chip. Para llevar a cabo esta investigación, ha sido primordial la comprensión de la física de las medidas realizadas, el diseño e implementación de instrumentación adicional para polarizar eléctrica y térmicamente la muestra, y la puesta a punto de un sistema TIR, optimizando su proceso de adquisición. Para mostrar la potencialidad de la solución propuesta, se han analizado los siguientes casos de estudio: i)caracterización de parásitos de interconexión y de acoplo por sustrato a nivel encapsulado y chip, respectivamente; ii)mecanismos de fallo de diodos de potencia de gap ancho (WBG) bajo condiciones de sobrecarga, iii)estudio local del comportamiento eléctrico anómalo en dispositivos de potencia WBG, iv)caracterización local eléctrica y térmica de amplificadores de potencia para RF y microondas, v)análisis funcional y de consumo sistemas sensores integrados RFID inalámbricos. Las conclusiones de cada estudio han sido proporcionadas a los diseñadores del dispositivo o sistema inspeccionado para mejorar sus prestaciones o robustez. Se ha puesto de manifiesto que la solución propuesta es una herramienta potente e innovadora, no sólo para el análisis de fallos, sino que también para extraer los parámetros físicos locales en dispositivos y caracterizar eléctrica y funcionalmente sistemas microelectrónicos complejos. Además, las metodologías presentadas son extrapolables a otros equipos de medida de temperatura con mayor resolución espacial.
展开▼