首页> 外文OA文献 >局所記述子を用いた顔特徴点抽出と顔認識・顔表情認識
【2h】

局所記述子を用いた顔特徴点抽出と顔認識・顔表情認識

机译:使用局部描述符的面部特征点提取和面部识别/面部表情识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents new approaches on three essential techniques on facial image analysis:facial feature localization, face recognition, and facial expression recognition using localappearance descriptors. Such techniques have a large number of applications, including security,person verification, internet communication, and compute entertainment. Recent advances inautomated face detection and tracking, facial feature extraction, pattern recognition, and machinelearning have made it possible to develop automatic face analysis systems to address theseapplications. However, successful application under real-world conditions remains a challenge,since face images are subject to a wide range of variations. These include pose or view angle,illumination, occlusion, facial expression, time delay between image acquisition, and individualdifferences.To make the face image processing system be robust to deal with such practical conditions,this thesis develops novel methods on facial feature localization, face recognition, and facialexpression recognition, and tests the proposed methods on a large number of face images frompublicly available databases to verify the efficiency and superiority. This work does not followthe conventional approaches, for example, the subspace-based methods. Instead, efforts are madeto modify the local appearance descriptors, which are successfully used in object recognition inrecent years, and they are applied in facial feature localization and extraction. It is the firstattempt to systematically use local appearance descriptors in facial feature localization, facerecognition, and facial expression recognition at the same time.Two new algorithms based on statistical shape model and local appearance descriptors (SIFT descriptor and LGBP features) are proposed: the SIFT-ASM algorithm and the LGBP-ASMalgorithm. SIFT descriptor and LGBP features are originally introduced to describe the localappearance features around facial landmark points for the statistical shape model. Moreover,GentleBoost classifiers are used to train the local appearance features to avoid the least squareminimizations based on Gaussian assumption in the original statistical shape model method.Experimental results on more than 2000 face images in the XM2VTS and the Softpia Japandatabase show that the proposed methods improve the accuracy and robustness of facial featurelocalization significantly.For face recognition techniques, this work focus on solving the practical problems inreal-world face identification systems: face images under variant conditions of facial expressions,strong non-uniform lighting, partial occlusions, time delay between image acquisition, and so on.A block-based bag of words method is proposed for robust face recognition. This work appliesthe bag of words method to face recognition to extract discriminative local facial features for thefirst time. Moreover, the proposed method is able to provide holistic spatial information ofdifferent local facial regions at the same time. Only using one single frame with neutralexpression per person for training, the proposed method successfully deal with the difficultconditions mentioned above, and achieve the best face recognition performance ever on the ARdatabase. The average face recognition rates of the standard set and darkened set of theXM2VTS database also outperform other recent works.Facial expression recognition requires more subtle and discriminative facial feature extractioncomparing to face recognition. A novel framework of appearance and shape informationextraction is developed for facial expression recognition. Facial-component-based bag of wordsmethod is presented to extract local facial appearance changes while maintaining the holisticcharacteristics; similarly, facial-component-based PHOG descriptor is proposed to extract facelocal shape while enhancing the spatial information. Our method makes the bag of wordsmethods and local descriptors be possible to be used in facial expression recognition for the firsttime. The decision level fusion of the extracted appearance and shape information achieved theaverage recognition rate as 96.33% on the Cohn-Kanade database, which outperforms thestate-of-the-art research works.The thesis is organized as follows: in Chapter 1, the research background of face image analysis, especially the background of facial feature localization, face recognition, and facialexpression recognition is firstly overviewed. Then the research work of the thesis is introduced.In Chapter 2, a literature review on facial feature localization, specifically on the Active ShapeModel (ASM) method, and local appearance descriptors is given. Two novel algorithms based onASM using SIFT descriptor and LGBP features are presented in Chapter 3. GentleBoostclassifiers are also applied to replace the least square minimizations based on Gaussianassumption in the original ASM method. The two methods are tested on the XM2VTS andSoftpia Japan databases, and it is shown that the proposed methods significantly outperform theoriginal ASM method for facial feature localization. In Chapter 4, an overview on the previousworks on face recognition is firstly given, and the problems in practical face recognition systemsare analyzed. A block-base bag of words (BBoW) method for robust face recognition underdifferent real-world conditions is proposed. Experimental results on the AR and XM2VTSdatabases are given to show the efficiency and superiority of the proposed method. In Chapter 5,previous works on facial expression recognition are firstly introduced. Then the appearance andshape information extraction method is presented and the experimental results on theCohn-Kanade database are given to show that the proposed method outperforms thestate-of-the-art works. Finally, conclusions and future work of this thesis are given.
机译:本文提出了针对面部图像分析的三种基本技术的新方法:面部特征定位,面部识别和使用局部外观描述符进行面部表情识别。这样的技术具有大量的应用,包括安全性,人员验证,互联网通信和计算娱乐。自动化面部检测和跟踪,面部特征提取,模式识别和机器学习的最新进展使得开发自动面部分析系统以解决这些应用成为可能。但是,由于人脸图像的变化范围很大,因此在现实条件下成功应用仍然是一个挑战。这些包括姿势或视角,照明,遮挡,面部表情,图像获取之间的时间延迟以及个体差异。为了使面部图像处理系统能够应对此类实际条件,本文开发了有关面部特征定位,面部识别的新方法。识别和面部表情识别,并在公开数据库中对大量面部图像进行测试,以验证其有效性和优越性。这项工作不遵循常规方法,例如基于子空间的方法。取而代之的是,努力修改局部外观描述符,其在最近几年中成功地用于对象识别中,并且被应用于面部特征的定位和提取。首次尝试在面部特征定位,面部识别和面部表情识别中同时使用局部外观描述符。提出了两种基于统计形状模型和局部外观描述符的新算法(SIFT描述符和LGBP特征):SIFT -ASM算法和LGBP-ASM算法。最初引入SIFT描述子和LGBP特征来描述统计形状模型的面部界标点周围的局部外观特征。此外,在原始的统计形状模型方法中,使用GentleBoost分类器来训练局部外观特征,从而避免基于高斯假设的最小二乘最小化.XM2VTS和Softpia Japan数据库中2000多个人脸图像的实验结果表明,所提出的方法改进了对于面部识别技术,这项工作着重于解决现实世界中的面部识别系统的实际问题:面部表情变化条件下的面部图像,强烈的不均匀照明,局部遮挡,时间间隔之间的延迟提出了一种基于块的词袋方法,用于鲁棒的人脸识别。这项工作首次将词袋法应用于人脸识别,以提取具有区别性的局部人脸特征。此外,所提出的方法能够同时提供不同局部面部区域的整体空间信息。所提出的方法仅使用每人具有中性表达的一帧进行训练,就成功地解决了上述困难条件,并在ARdatabase上获得了最佳的人脸识别性能。 XM2VTS数据库的标准集和变暗集的平均面部识别率也胜过其他最近的著作。面部表情识别与面部识别相比,需要更加细微和区分性的面部特征提取。开发了一种新颖的外观和形状信息提取框架,用于面部表情识别。提出了基于面部成分的单词方法,以提取局部面部外观变化,同时保持整体特征。类似地,提出了基于面部成分的PHOG描述符,以在增强空间信息的同时提取面部局部形状。我们的方法使单词方法和局部描述符包首次可以用于面部表情识别。提取的外观和形状信息的决策级融合在Cohn-Kanade数据库上的平均识别率为96.33%,优于最新的研究工作。论文的组织结构如下:在第一章中,研究首先概述了面部图像分析的背景,特别是面部特征定位,面部识别和面部表情识别的背景。第二章是关于面部特征定位的文献综述,特别是关于Active ShapeModel(ASM)方法的文献综述。,并给出局部外观描述符。第3章介绍了两种基于ASM的新颖算法,其中使用了SIFT描述符和LGBP特征。GentleBoost分类器还用于替换原始ASM方法中基于高斯假设的最小二乘最小化。这两种方法在XM2VTS和Softpia Japan数据库上进行了测试,结果表明,所提出的方法明显优于原始的ASM方法进行面部特征定位。在第四章中,首先概述了有关人脸识别的现有工作,并分析了实际人脸识别系统中存在的问题。提出了一种基于块的词袋(BBoW)方法,用于在不同的现实世界条件下进行鲁棒的人脸识别。在AR和XM2VTS数据库上的实验结果证明了该方法的有效性和优越性。在第五章中,首先介绍了人脸表情识别的前作。然后提出了外观和形状信息提取方法,并在Cohn-Kanade数据库上给出了实验结果,表明所提出的方法优于最新技术。最后,给出了本文的结论和今后的工作。

著录项

  • 作者

    黎 子盛; Zisheng Li;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号