首页> 外文OA文献 >脚負荷情報に基づく脚相調整を用いた四脚動歩行の生成と安定化
【2h】

脚負荷情報に基づく脚相調整を用いた四脚動歩行の生成と安定化

机译:基于腿部载荷信息的腿部相位调整的四足步行产生和稳定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Regarding the issue of legged locomotion stabilization, it can be pointed out that, atlow speeds, since gravity is dominant, posture control using sensory information suchas ground reaction force or vestibular information is predominant. On the other hand,at high speeds, since the influence of the inertial forces is dominant, rhythmic motioncontrol to construct a limit cycle becomes primordial. Consequently, legged locomotioncontrollers should integrate both posture control and rhythmic motion control to be ableto cover the whole range of locomotion speeds.This thesis considers the use of sensory information related to leg loading (i.e. theload supported by the leg) in a CPG type controller to generate stable quadrupedaldynamic walk. Leg loading information is used at the individual leg level to regulate thetransitions between the stance and the swing phases. Accordingly, the CPG activity isadjusted of via phase modulations, i.e. modulations of the relative durations of the stanceand swing phases of the stepping motion in each leg. This study concentrates on therole of the regulation of stance-to-swing transition using leg loading information. Usingdynamics simulations, it investigates the contribution of this mechanism to rhythmicmotion control and posture control, in the range from low- to medium-speed walking.This issue is investigated in the case of two-dimensional stepping motions and threedimensionalquadrupedal dynamic walk. In both cases, a sensor-dependent CPG isused, where phase transitions in each leg controller is controlled using leg loading information.Swing-to-stance and stance-to-swing transitions are respectively triggeredwhen the touchdown event is detected and when leg loading becomes smaller than agiven threshold.Generation of two-dimensional stepping motions is achieved with musculoskeletal modelsfaithful to the cat anatomy. For the hind legs, a preexistent model is used, whilean original model of the forelegs is developed. A neural leg controller architecture, ableto induce stepping motions of a leg at various speeds, is proposed. Using a pair ofleg controllers, stepping patterns at constant speed are generated with the hind legsmodel and the forelegs model separately, by replacing the not-actuated pair of legs bya wheeled support. As a result of the phase modulations based on leg loading information,stable alternate stepping coordination of the legs emerges, even when the two legcontrollers are independent. Next, the issue of speed modulation is considered with thehind legs model. The leg coordination maintains in the whole range of speeds considered and adaptations of walking patterns according to the speed are characterized. Strikingsimilarities with the adaptations taking place during real cat locomotion are found, reinforcingthe hypothesis that, in animals, stance-to-swing transition is mainly regulatedusing sensory signals related to leg unloading.In order to facilitate the study of the action of the phase modulations in the threedimensionalcase, a traditional robotic approach, combining trajectory generation andlocal PD control, is used instead of a muscular model to generate the motor patterns.Using four independent controllers, stable quadrupedal dynamic walk is generated in abroad range of cyclic periods and speeds. Phase modulations using leg loading informationcontribute to the emergence of left-right alternate stepping coordination of the legs.The phase difference between ipsilateral legs is adjusted by setting appropriately twocategories of the leg controllers parameters: the vertical coordinate of nominal touchdownposition of the feet and the PD control gains of the ankle and knee joints. Thestability of the walking patterns is assessed by subjecting the model to lateral perturbations.In most of the application timings, the phase modulations adjust the rhythmicmotion of the legs to stabilize the body rolling motion against the disturbance. However,when the perturbation results in a sufficient decrease of the rolling motion amplitude onone side, the foreleg on the other side cannot swing and the leg coordination is severelydisturbed. Hence, a leg coordination mechanism, promoting stance-to-swing transitionin the foreleg when the ipsilateral hind leg is swinging, is added to the previous architectureto improve the performances. With the additional coordination mechanism,the control system realizes good performances against the lateral perturbations for allthe timings of applications. Moreover, it is able to tackle terrain irregularities (such assteps and slopes) while stabilizing the posture. Hence, basic integration of posture controland rhythmic motion control is demonstrated with a simple and distributed controlarchitecture grounded on phase modulations using leg loading information.
机译:关于腿部运动稳定的问题,可以指出的是,在低速下,由于重力是主要的,所以使用诸如地面反作用力或前庭信息的感觉信息的姿势控制是主要的。另一方面,在高速下,由于惯性力的影响是主要的,因此构造极限循环的有节奏的运动控制成为原始的。因此,腿式运动控制器应将姿势控制和有节奏的运动控制两者结合起来,以涵盖整个运动速度范围。本文考虑在CPG型控制器中使用与腿部负荷(即腿部支撑的负荷)有关的感觉信息来产生稳定的四足动力行走。腿部负荷信息用于单个腿部级别,以调节姿势和挥杆阶段之间的转换。因此,通过相位调制,即,在每条腿中步进运动的姿势和摆动相位的相对持续时间的调制,来调节CPG活动。这项研究集中在利用腿部负荷信息调节姿势向摇摆过渡的过程中。通过动力学模拟,研究了该机制在低速到中速步行范围内对节奏运动控制和姿势控制的贡献。在二维步进运动和三维四足动态步行的情况下研究了此问题。在这两种情况下,均使用传感器相关的CPG,其中每个腿部控制器中的相变均使用腿部载荷信息进行控制。当检测到触地事件时以及当腿部载荷变为时,将分别触发摇摆至姿态转变和姿态至摇摆转变小于给定的阈值。忠实于猫解剖结构的肌肉骨骼模型可以实现二维步进运动。对于后腿,使用现有模型,同时开发前肢的原始模型。提出了一种神经腿控制器体系结构,该体系结构能够以各种速度诱导腿部的步进运动。使用一对腿控制器,通过用轮支撑代替未致动的一对腿,分别用后腿模型和前腿模型生成恒定速度的步进模式。由于基于腿部负载信息的相位调制,即使两个腿部控制器是独立的,腿部也会出现稳定的交替步进协调。接下来,用后腿模型考虑速度调制的问题。腿部协调在所考虑的整个速度范围内均保持不变,并根据速度对步行模式进行了调整。发现了在真实的猫运动过程中发生的与适应过程的惊人相似之处,从而强化了以下假设:在动物中,站姿-摆动过渡主要是通过与腿部卸载相关的感觉信号来调节的。在三维情况下,使用传统的机器人方法,结合了轨迹生成和局部PD控制,而不是使用肌肉模型来生成电机模式。使用四个独立的控制器,可以在国外周期性和速度范围内产生稳定的四足动态行走。利用腿部载荷信息进行相位调制有助于腿部左右交替步进协调的出现。通过适当地设置腿部控制器参数的两个类别来调整同侧腿部之间的相位差:脚的正常着地位置和PD的垂直坐标控制踝关节和膝关节的增益。通过使模型受到横向扰动来评估步行模式的稳定性。在大多数应用时机中,相位调制可调节腿部的节律运动,从而使身体的滚动运动免受干扰。然而,当摄动导致一侧的侧倾运动幅度充分降低时,另一侧的前肢不能摆动并且腿部协调受到严重干扰。因此,将腿部协调机制添加到先前的体系结构中,以在同侧后腿摆动时促进前肢从姿势到摆动的过渡。借助附加的协调机制,该控制系统在所有应用场合下都可抵抗侧向扰动,表现出出色的性能。而且,它能够在稳定姿势的同时解决地形不规则(例如台阶和斜坡)的问题。因此,利用基于腿部载荷信息的基于相位调制的简单且分布式的控制体系结构,展示了姿势控制和节奏运动控制的基本集成。

著录项

  • 作者

    CHRISTOPHE MAUFROY;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号