首页> 外文OA文献 >協調フィルタリングに基づくオンライン推薦システムに関する研究
【2h】

協調フィルタリングに基づくオンライン推薦システムに関する研究

机译:基于协同过滤的在线推荐系统研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Popular online services provide a recommendation to users. Finding items fromthe recommendation list is accomplished by information retrieval using methodssuch as keyword search or browsing. In general, collaborative filtering algorithm isused to calculate of recommended items. Collaborative filtering utilizes a users ’history of purchases or rating scores for items. But there are some problems ofthis algorithm.1. A problem of presentation of recommendation items.Even if a user could see recommended items, he/she can ’t know the reason whythose items were recommended.2 A problem of reliance of recommendation items.Rating data of your non-similar user may influence on decision of recommendationitems for you.3. A problem of lacking the serendipity and novelty of recommended items.Users will expect to encounter some items which have serendipity or novelty whenusing recommender system. However, these will lack because recent collaborativefiltering techniques tend to use user’s profile too much and create detailed clusters.4. A problem of preparing enough data set of user’s ratings.To calculate recommend items with collaborative filtering, much amount of user’srating data is needed for the system.To resolve these problems, we propose these approaches below.At first, we developed a browsing system, named ZASH, for movie database. Thesystem used multiple 2D planes in 3D space so that the same type of information isdisplayed in each plane. The use of 3D space improved the visibility of links. Movietitles and commentators were laid out by using Multi-Dimensional Scaling methodso that the similar data are placed physically near each other. In this system,we considered additional information of the data as multi-dimensional data. Weexpected that this system can visualize relations between the data and additionaldata. Moreover, user would be able to see reliable recommendation items whichhave serendipity or novelty through similar user’s favorite items.Secondly, we analyze the differences in the results of the rating when the granularityof the score changes. In general, calculation of recommended items utilizes auser’s history of purchases or rating scores for items. We hypothesize that a binaryrating makes it easier for users to rate items and also makes it easier for recommendationsystems to perform calculations. This paper verified this hypothesisbased on the analysis of rating examples such as Lat.fm.
机译:流行的在线服务向用户提供推荐。从推荐列表中查找项目是通过使用关键字搜索或浏览等方法进行信息检索来完成的。通常,协同过滤算法用于计算推荐项目。协同过滤利用用户的购买历史或商品的评分分数。但是该算法存在一些问题。1。推荐项目的呈现问题。即使用户看到推荐项目,他/她也不知道为什么推荐这些项目。2推荐项目的依赖问题。非相似用户的评分数据可能会影响根据您的推荐项目决定3。推荐项目缺乏偶然性和新颖性的问题。使用推荐系统时,用户可能会遇到一些偶然性或新颖性的项目。但是,由于最近的协作过滤技术往往会过多地使用用户的个人资料并创建详细的集群,因此将缺乏这些功能。4。准备足够数量的用户评分数据集的问题。要通过协作过滤计算推荐项目,系统需要大量用户评分数据。为解决这些问题,我们在下面提出以下方法。电影数据库的名为ZASH的系统。系统在3D空间中使用了多个2D平面,以便在每个平面中显示相同类型的信息。 3D空间的使用提高了链接的可见性。通过使用多维缩放方法对电影标题和评论员进行布局,以使相似的数据在物理上彼此靠近。在该系统中,我们将数据的附加信息视为多维数据。我们预期该系统可以可视化数据与附加数据之间的关系。此外,用户可以通过相似的用户喜欢的项目看到具有偶然性或新颖性的可靠推荐项目。其次,当分数的粒度变化时,我们分析了评分结果的差异。通常,推荐商品的计算会利用用户的购买历史或商品的评分分数。我们假设二进制化使用户更容易对项目进行评分,也使推荐系统更易于执行计算。本文基于对Lat.fm等评级示例的分析,验证了这一假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号