首页> 外文OA文献 >A Framework for Combining a Motion Atlas with Non-Motion Information to Learn Clinically Useful Biomarkers:Application to Cardiac Resynchronisation Therapy Response Prediction
【2h】

A Framework for Combining a Motion Atlas with Non-Motion Information to Learn Clinically Useful Biomarkers:Application to Cardiac Resynchronisation Therapy Response Prediction

机译:一种将运动图谱与非运动信息相结合以学习临床上有用的生物标记物的框架:在心脏再同步治疗反应预测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a framework for combining a cardiac motion atlas with non-motion data. The atlas represents cardiac cycle motion across a number of subjects in a common space based on rich motion descriptors capturing 3D displacement, velocity, strain and strain rate. The non-motion data are derived from a variety of sources such as imaging, electrocardiogram (ECG) and clinical reports. Once in the atlas space, we apply a novel supervised learning approach based on random projections and ensemble learning to learn the relationship between the atlas data and some desired clinical output. We apply our framework to the problem of predicting response to Cardiac Resynchronisation Therapy (CRT). Using a cohort of 34 patients selected for CRT using conventional criteria, results show that the combination of motion and non-motion data enables CRT response to be predicted with 91.2% accuracy (100% sensitivity and 62.5% specificity), which compares favourably with the current state-of-the-art in CRT response prediction.
机译:我们提出了将心脏运动图谱与非运动数据相结合的框架。该地图集基于捕获3D位移,速度,应变和应变率的丰富运动描述符,代表了公共空间中多个对象的心动周期运动。非运动数据来自各种来源,例如成像,心电图(ECG)和临床报告。进入图集空间后,我们将基于随机投影和整体学习应用一种新颖的监督学习方法,以学习图集数据与某些所需临床输出之间的关系。我们将我们的框架应用于预测对心脏再同步治疗(CRT)的反应的问题。使用34名按照常规标准选择CRT的患者队列,结果显示,运动数据和非运动数据的组合可使CRT反应的预测准确度达到91.2%(灵敏度为100%,特异性为62.5%),与CRT响应预测的最新技术。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号