首页> 外文OA文献 >Investigating methods used to quantify gaseous emissions from vegetation fires using spectroscopic measurements
【2h】

Investigating methods used to quantify gaseous emissions from vegetation fires using spectroscopic measurements

机译:使用光谱测量法量化植被火灾中气体排放的调查方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work investigates the application of ground-based trace gas spectroscopy to deter- mine the chemical makeup and quantity of smoke emitted from vegetation fires. Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS) has been infrequently deployed in fire emission studies, yet is potentially a portable, lightweight, inexpensive and simple method. Fourier Transform Infrared (FTIR) spectroscopy has been more commonly used in fire emissions studies, but not generally in the long ( 10 m) open-path ground-based geometry explored here. This research combines these approaches to investigate their ability to quantify trace gas fluxes emitted from open vegetation fires, in part to help validate estimates of fuel consumption rate based on fire radiative power [FRP] measures. UV and IR measurements of the smoke plumes from controlled open vegetation fires ( 4 hectares) were recorded during three field campaigns in Arnhem Land (Northern Australia), Kruger Park (South Africa) and Alberta (Canada). The UV-DOAS was used to quantify NO2 and SO2 vertical column amounts (maximum column amounts approx 200 ppmm), allowing the determination of flux-rates when used to traverse the smoke plume and coupled with plume velocity estimates. Horizontal column amounts of the main plume carbonaceous species (CO2, CO and CH4) were quantified using FTIR methods and used to calculate emission ratios and emissions factors for the target gases, providing detail on inter- and intra- fire variations that are often available from the current literature. Providing NO2 and SO2 are detectable by the FTIR, UV-DOAS flux-rates and FTIR emissions ratios can be combined to calculate flux rates for all FTIR-detectable species. This allows for the determination of the total carbon flux from the fires, and its variation over time. Since vegetation is approximately 50% carbon, this flux is in theory directly proportion to the fuel consumption rate, and directly comparable to the fire’s radiative power output variations as determined by airborne thermal imaging. Hence, in addition to providing the means to estimate smoke plume chemical makeup, emissions magnitude and variability, the simultaneous deployment of the techniques of UV-DOAS, FTIR spectroscopy and airborne thermal imaging enables the validation of FRP derived fuel consumption rates. The FRP method is gaining ground as a tool for improving biomass burning emissions inventories based on satellite observations, but at present has had relatively little validation. This study therefore contributes to the ongoing evaluation effort. Findings demonstrate that the UV-DOAS is an effective way to measure column amounts of SO2 and NO2 in vegetation fire plumes, providing that the fires are of an adequate size and emit smoke in sufficient quantities. The exact nature of the ability to accurately quantify NO2 and SO2 using the method did have a dependence on fuel type, since the combustion of different fuel types (e.g. grasses vs. woody fuels vs. organic soils) appeared to cause more of less of these particular gases to be emitted. There was difficulty in confidently detecting NO2 via the OP-FTIR approach for the majority of the study cases, due to the relatively weak IR absorption bands used and the relative scarcity of this gas in the plumes in comparison to some others studied. We advocate using the UV-DOAS and FTIR combination in relation to trace gas measurements from vegetation fires, providing SO2 or NO2 can be identified by the FTIR in the particular biomass burning situation under study. Where simultaneous FRP measurements are available, the carbonaceous flux rates calculated using the FTIR/UV-DOAS method show a strong correlation with FRP, helping to confirm the relationship between FRP and fuel consumption rate at the scale of these vegetation fires. This is to our knowledge currently by far the largest fires upon which this relationship has been evaluated, prior evaluations being limited to laboratory-scale events only.
机译:这项工作研究了地面痕量气体光谱法在确定化学成分和植被大火所散发的烟雾量方面的应用。紫外差动光吸收光谱法(UV-DOAS)很少用于火灾排放研究中,但潜在地是一种便携式,轻便,廉价且简单的方法。傅里叶变换红外(FTIR)光谱在火灾排放研究中已越来越普遍,但在这里探索的长距离(> 10 m)的开放路径地面几何中却并不普遍。这项研究结合了这些方法,以研究其量化露天植被大火排放的微量气体通量的能力,部分有助于基于火辐射功率[FRP]措施验证燃料消耗率的估算。在阿纳姆地(北澳大利亚),克鲁格公园(南非)和艾伯塔省(加拿大)的三场野战中,记录了受控植被开火(> 4公顷)的烟羽的紫外和红外测量结果。 UV-DOAS用于量化NO2和SO2垂直色谱柱的数量(最大色谱柱数量约为200 ppmm),从而可以确定穿过烟羽并与烟流速度估算结合时的通量率。使用FTIR方法对主要羽状碳质物质(CO2,CO和CH4)的水平柱量进行了定量,并用于计算目标气体的排放比和排放因子,从而提供了通常可从目前的文献。假设FTIR可检测到NO2和SO2,则可以结合使用UV-DOAS的通量率和FTIR排放比来计算所有FTIR可检测物质的通量率。这样就可以确定火灾中的总碳通量及其随时间的变化。由于植被大约含50%的碳,因此从理论上讲,这种通量与燃料消耗率成正比,并且可以与通过机载热成像确定的火的辐射功率输出变化直接比较。因此,除了提供估算烟羽化学成分,排放量和可变性的方法外,同时部署UV-DOAS,FTIR光谱学和机载热成像技术还可以验证FRP得出的燃料消耗率。基于卫星观测,FRP方法已成为改善生物量燃烧排放清单的一种工具,但目前尚未得到足够的验证。因此,这项研究有助于正在进行的评估工作。研究结果表明,UV-DOAS是测量植被火羽中的SO2和NO2含量的有效方法,前提是火势足够大且散发大量烟雾。使用该方法准确量化NO2和SO2的能力的确切性质确实取决于燃料类型,因为不同燃料类型(例如草,木本燃料和有机土壤)的燃烧似乎会导致更多的减少。排放的特定气体。在大多数研究案例中,由于使用的红外吸收谱带相对较弱,并且烟气中这种气体相对稀少(与其他一些研究对象相比),因此难以通过OP-FTIR方法自信地检测NO2。我们提倡将UV-DOAS和FTIR结合用于植被火灾中的痕量气体测量,前提是在所研究的特定生物质燃烧情况下,FTIR可以识别SO2或NO2。在可以同时进行FRP测量的情况下,使用FTIR / UV-DOAS方法计算出的碳通量速率与FRP具有很强的相关性,有助于在这些植被大火的规模上确认FRP与燃料消耗率之间的关系。据我们所知,这是迄今为止评估这种关系的最大火灾,先前的评估仅限于实验室规模的事件。

著录项

  • 作者

    Tattaris Maria;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号