首页> 外文OA文献 >Members of BTB Gene Family of Scaffold Proteins Suppress Nitrate Uptake and Nitrogen Use Efficiency
【2h】

Members of BTB Gene Family of Scaffold Proteins Suppress Nitrate Uptake and Nitrogen Use Efficiency

机译:BTB支架蛋白基因家族成员抑制硝酸盐吸收和氮利用效率。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Development of crops with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. However, achieving this goal has proven difficult since NUE is a complex trait encompassing physiological and developmental processes. We thought to tackle this problem by taking a systems biology approach to identify candidate target genes. First, we used a supervised machine-learning algorithm to predict a NUE gene network in Arabidopsis (Arabidopsis thaliana). Second, we identified BT2, a member of the Bric-a-Brac/Tramtrack/Broad gene family, as the most central and connected gene in the NUE network. Third, we experimentally tested BT2 for a role in NUE. We found NUE decreased in plants overexpressing BT2 gene compared to wild-type plants under limiting nitrate conditions. In addition, NUE increased compared to wild-type plants under low nitrate conditions in double mutant plants in bt2 and its closely related homolog bt1, indicating a functional redundancy of BT1 and BT2 for NUE. Expression of the nitrate transporter genes NRT2.1 and NRT2.4 increased in the bt1/bt2 double mutant compared to wild-type plants, with a concomitant 65% increase in nitrate uptake under low nitrate conditions. Similar to Arabidopsis, we found that mutation of the BT1/BT2 ortholog gene in rice (Oryza sativa) OsBT increased NUE by 20% compared to wild-type rice plants under low nitrogen conditions. These results indicate BT gene family members act as conserved negative regulators of nitrate uptake genes and NUE in plants and highlight them as prime targets for future strategies to improve NUE in crops. (Résumé d'auteur)
机译:开发具有提高的氮利用效率(NUE)的农作物对可持续农业至关重要。然而,事实证明,实现这一目标非常困难,因为NUE是一个涵盖生理和发育过程的复杂特征。我们认为通过采用系统生物学方法来识别候选靶基因来解决这个问题。首先,我们使用监督的机器学习算法来预测拟南芥(Arabidopsis thaliana)中的NUE基因网络。其次,我们将Bric-a-Brac / Tramtrack / Broad基因家族的成员BT2鉴定为NUE网络中最重要,最重要的基因。第三,我们通过实验测试了BT2在NUE中的作用。我们发现在有限的硝酸盐条件下,与野生型植物相比,过量表达BT2基因的植物中NUE降低。此外,与低硝酸盐条件下的野生型植物相比,bt2和与其密切相关的同系物bt1的双重突变植物中的NUE增加,表明BT1和BT2在NUE上具有功能冗余。与野生型植物相比,bt1 / bt2双突变体中硝酸盐转运蛋白基因NRT2.1和NRT2.4的表达增加,在低硝酸盐条件下,硝酸盐吸收的同时增加了65%。与拟南芥相似,我们发现在低氮条件下,与野生型水稻植株相比,水稻(Oryza sativa)OsBT中BT1 / BT2直系同源基因的突变使NUE增加了20%。这些结果表明,BT基因家族成员充当植物硝酸盐吸收基因和NUE的保守负调控因子,并突出显示它们是未来改善作物NUE的主要目标。 (Résuméd'auteur)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号