首页> 外文OA文献 >Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.
【2h】

Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.

机译:模拟缺氧的生物活性玻璃/胶原糖胺聚糖复合支架可增强血管生成和骨修复。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the biggest challenges in regenerative medicine is promoting sufficient vascularisation of tissue-engineered constructs. One approach to overcome this challenge is to target the cellular hypoxia inducible factor (HIF-1α) pathway, which responds to low oxygen concentration (hypoxia) and results in the activation of numerous pro-angiogenic genes including vascular endothelial growth factor (VEGF). Cobalt ions are known to mimic hypoxia by artificially stabilising the HIF-1α transcription factor. Here, resorbable bioactive glass particles (38 μm and 100 μm) with cobalt ions incorporated into the glass network were used to create bioactive glass/collagen-glycosaminoglycan scaffolds optimised for bone tissue engineering. Inclusion of the bioactive glass improved the compressive modulus of the resulting composite scaffolds while maintaining high degrees of porosity (u3e97%). Moreover, in vitro analysis demonstrated that the incorporation of cobalt bioactive glass with a mean particle size of 100 μm significantly enhanced the production and expression of VEGF in endothelial cells, and cobalt bioactive glass/collagen-glycosaminoglycan scaffold conditioned media also promoted enhanced tubule formation. Furthermore, our results prove the ability of these scaffolds to support osteoblast cell proliferation and osteogenesis in all bioactive glass/collagen-glycosaminoglycan scaffolds irrespective of the particle size. In summary, we have developed a hypoxia-mimicking tissue-engineered scaffold with pro-angiogenic and pro-osteogenic capabilities that may encourage bone tissue regeneration and overcome the problem of inadequate vascularisation of grafts commonly seen in the field of tissue engineering.
机译:再生医学的最大挑战之一是促进组织工程构建体的充分血管形成。克服这一挑战的一种方法是靶向细胞缺氧诱导因子(HIF-1α)途径,该途径可响应低氧浓度(缺氧)并导致包括血管内皮生长因子(VEGF)在内的许多促血管生成基因被激活。已知钴离子通过人为稳定HIF-1α转录因子来模拟缺氧。在这里,将可吸收的生物活性玻璃颗粒(38μm和100μm)以及结合到玻璃网络中的钴离子用于创建针对骨组织工程优化的生物活性玻璃/胶原-糖胺聚糖支架。包含生物活性玻璃改善了所得复合支架的压缩模量,同时保持了高孔隙率(约97%)。此外,体外分析表明,平均粒径为100μm的钴生物活性玻璃的掺入显着增强了内皮细胞中VEGF的产生和表达,并且钴生物活性玻璃/胶原-糖胺聚糖支架条件培养基也促进了肾小管形成的增强。此外,我们的结果证明了这些支架在所有生物活性玻璃/胶原-糖胺基聚糖支架中支持成骨细胞增殖和成骨的能力,而与粒径无关。总而言之,我们已经开发出一种具有缺氧作用的组织工程支架,具有促血管生成和促成骨的功能,可以促进骨组织再生并克服组织工程领域中常见的移植物血管化不足的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号