首页> 外文OA文献 >Applying interval type-2 fuzzy rule based classifiers through a cluster-based class representation
【2h】

Applying interval type-2 fuzzy rule based classifiers through a cluster-based class representation

机译:通过基于聚类的类表示应用基于区间类型2模糊规则的分类器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fuzzy Rule-Based Classification Systems (FRBCSs) have the potential to provide so-called interpretable classifiers, i.e. classifiers which can be introspective, understood, validated and augmented by human experts by relying on fuzzy-set based rules. This paper builds on prior work for interval type-2 fuzzy set based FRBCs where the fuzzy sets and rules of the classifier are generated using an initial clustering stage. By introducing Subtractive Clustering in order to identify multiple cluster prototypes, the proposed approach has the potential to deliver improved classification performance while maintaining good interpretability, i.e. without resulting in an excessive number of rules. The paper provides a detailed overview of the proposed FRBC framework, followed by a series of exploratory experiments on both linearly and non-linearly separable datasets, comparing results to existing rule-based and SVM approaches. Overall, initial results indicate that the approach enables comparable classification performance to non rule-based classifiers such as SVM, while often achieving this with a very small number of rules.
机译:基于模糊规则的分类系统(FRBCS)有潜力提供所谓的可解释分类器,即人类专家可以依靠基于模糊集的规则进行内省,理解,验证和增强的分类器。本文建立在基于区间2型模糊集的FRBC的先验工作的基础上,其中使用初始聚类阶段生成分类器的模糊集和规则。通过引入减法聚类以识别多个聚类原型,所提出的方法具有在保持良好的可解释性的同时提供改进的分类性能的潜力,即不会导致过多的规则。本文对拟议的FRBC框架进行了详细的概述,随后对线性和非线性可分离数据集进行了一系列探索性实验,将结果与现有的基于规则和SVM的方法进行了比较。总体而言,初步结果表明,该方法可实现与非基于规则的分类器(如SVM)相当的分类性能,而通常仅需很少的规则即可实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号