首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >An Interval Type-2 Neural Fuzzy Classifier Learned Through Soft Margin Minimization and its Human Posture Classification Application
【24h】

An Interval Type-2 Neural Fuzzy Classifier Learned Through Soft Margin Minimization and its Human Posture Classification Application

机译:通过软边际最小化学习的区间2型神经模糊分类器及其人体姿势分类应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an interval type-2 neural fuzzy classifier learned through soft margin minimization (IT2NFC-SMM) and applies it to human body posture classification. The IT2NFC-SMM consists of interval type-2, zero-order Takagi–Sugeno (T–S) fuzzy rules established through online structure learning. The antecedent part of the IT2NFC-SMM uses interval type-2 fuzzy sets to decrease the number of rules and manage noisy data. For parameter learning, the consequent parameters are learned through a linear support vector machine (SVM) for soft margin minimization to improve the generalization ability. The proposed SVM-based learning addresses the problem that the orders of the fuzzy rules in computing the outputs of an interval type-2 fuzzy system depend on the consequent values that are unknown in advance. To address this problem, the IT2NFC-SMM uses weighted bound-set boundaries to simplify the type-reduction operation and a novel crisp-to-interval linear SVM learning algorithm. Based on the soft margin minimization, the antecedent parameters are tuned using the gradient descent algorithm. The IT2NFC-SMM is applied to a vision-based human body posture classification system. The system uses two cameras and novel classification features extracted from a silhouette of the human body to classify the four postures of standing, bending, sitting, and lying. The classification performance of the IT2NFC-SMM is verified through results in clean and noisy classification examples and through the posture classification problem, as well as through comparisons with various type-1 and type-2 fuzzy classifiers. The overall result shows that the IT2NFC-SMM achieves higher classification rates with a smaller or similar model size than the classifiers used for comparison, especially for noisy classification problems.
机译:提出了一种通过软边际最小化学习的区间2型神经模糊分类器(IT2NFC-SMM),并将其应用于人体姿态分类。 IT2NFC-SMM由通过在线结构学习建立的间隔2型,零阶Takagi-Sugeno(TS)模糊规则组成。 IT2NFC-SMM的前一部分使用间隔2型模糊集来减少规则数量并管理嘈杂的数据。对于参数学习,通过线性支持向量机(SVM)学习后续参数,以最小化软边距以提高泛化能力。所提出的基于SVM的学习解决了以下问题:在计算间隔2型模糊系统的输出时,模糊规则的顺序取决于预先未知的结果值。为了解决这个问题,IT2NFC-SMM使用加权的边界集边界来简化类型归约运算,并使用一种新颖的间隔间隔线性SVM学习算法。基于软裕度最小化,使用梯度下降算法调整先行参数。 IT2NFC-SMM被应用于基于视觉的人体姿势分类系统。该系统使用两个摄像头和从人体轮廓提取的新颖分类特征对站立,弯曲,坐着和躺着的四个姿势进行分类。 IT2NFC-SMM的分类性能通过干净整洁的噪声分类示例结果,姿势分类问题以及与各种类型1和类型2模糊分类器的比较来验证。总体结果表明,与用于比较的分类器相比,IT2NFC-SMM在较小或相似的模型尺寸下可实现更高的分类率,尤其是对于嘈杂的分类问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号