首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Design of Reinforced Interval Type-2 Fuzzy C-Means-Based Fuzzy Classifier
【24h】

Design of Reinforced Interval Type-2 Fuzzy C-Means-Based Fuzzy Classifier

机译:基于增强区间2型模糊C均值的模糊分类器的设计

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with a new design methodology of a reinforced interval type-2 fuzzy c-means (FCM) based fuzzy classifier (FC). The key point of this study is to reduce the computational complexity of type-2 fuzzy set-based models and to alleviate the deterioration of its generalization abilities through the synergistic effect of two algorithms: First, interval type-2 FCM (IT2FCM) is used in the hidden layer of the network and connections (weights) are adjusted by invoking the least squares error estimation method. Second, an L2-norm regularization is considered in the cost function to avoid the construction of the network suffering from overfitting. In more detail, the hidden layer of the proposed FC is realized by interval type-2 FCM clustering to deal with the factor of uncertainty involved in the problem. This type of clustering is realized by using two values of the fuzzification coefficient resulting in the interval type-2 membership functions. Once completing type reduction, the membership grades of IT2FCM are used as the outputs of the hidden layer. Instead of the backpropagation training, least squares estimator based learning is applied to adjust the functional connection being regarded as linear functions mapping the hidden layer to the output layer. In order to reduce potential overfitting, L2-norm regularization is taken into account. The effectiveness of the proposed classifier is analyzed with the aid of a number of machine learning datasets as well as face image datasets. Thorough comparative studies are also included.
机译:本文涉及一种基于增强区间2型模糊c均值(FCM)的模糊分类器(FC)的新设计方法。这项研究的重点是通过两种算法的协同作用来降低基于2型模糊集的模型的计算复杂度并减轻其泛化能力的下降:首先,使用区间2型FCM(IT2FCM)在网络的隐藏层中,通过调用最小二乘误差估计方法来调整连接(权重)。其次,在代价函数中考虑L2范数正则化,以避免网络结构遭受过度拟合。更详细地讲,所提出的FC的隐藏层是通过间隔类型2 FCM聚类来实现的,以解决问题中涉及的不确定性因素。这种类型的聚类是通过使用模糊化系数的两个值生成间隔类型2隶属函数来实现的。完成类型缩减后,IT2FCM的成员资格等级将用作隐藏层的输出。代替反向传播训练,基于最小二乘估计的学习应用于调整功能连接,该功能连接被视为将隐藏层映射到输出层的线性函数。为了减少潜在的过度拟合,考虑了L2范数正则化。借助大量的机器学习数据集以及人脸图像数据集来分析提出的分类器的有效性。还包括全面的比较研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号