首页> 外文OA文献 >One-class classification for monitoring a specific land cover class: SVDD classification of fenland
【2h】

One-class classification for monitoring a specific land cover class: SVDD classification of fenland

机译:用于监视特定土地覆盖类别的一类分类:芬兰的SVDD分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Remote sensing is a major source of land cover information. Commonly, interest focuses on a single land cover class. Although a conventional multi-class classifier may be used to provide a map depicting the class of interest the analysis is not focused on that class and may be sub-optimal in terms of the accuracy of its classification. With a conventional classifier, considerable effort is directed on the classes that are not of interest. Here, it is suggested that a one-class classification approach could be appropriate when interest focuses on a specific class. This is illustrated with the classification of fenland, a habitat of considerable conservation value, from Landsat ETM+ imagery. A range of one-class classifiers are evaluated but attention focuses on the support vector data description (SVDD). The SVDD was used to classify fenland with an accuracy of 97.5% and 93.6% from the user’s and producer’s perspectives respectively. This classification was trained upon only the fenland class and was substantially more accurate in fen classification than a conventional multi-class maximum likelihood classification provided with the same amount of training data, which classified fen with an accuracy of 90.0% and 72.0% from the user’s and producer’s perspectives respectively. The results highlight the ability to classify a single class using only training data for that class. With a one-class classification the analysis focuses tightly on the class of interest, with resources and effort not directed on other classes, and there are opportunities to derive highly accurate classifications from small training sets.
机译:遥感是土地覆盖信息的主要来源。通常,兴趣集中在单个土地覆盖类别上。尽管可以使用常规的多类别分类器来提供描述感兴趣类别的地图,但是分析并未集中在该类别上,并且就其分类的准确性而言可能不是最佳的。使用常规的分类器,大量的精力用于不感兴趣的类。在这里,建议当兴趣集中在特定类别上时,采用一类分类方法可能是合适的。 Landsat ETM +影像对具有保护价值的栖息地fenland的分类进行了说明。评估了一系列一类分类器,但注意力集中在支持向量数据描述(SVDD)上。从用户和生产者的角度来看,使用SVDD对fenland进行分类的准确度分别为97.5%和93.6%。此分类仅针对fenland类进行训练,并且在fen分类中比提供了相同数量训练数据的传统多类最大似然分类要准确得多,后者对fen进行分类的准确度为用户的90.0%和72.0%和生产者的观点。结果突出显示了仅使用该课程的训练数据对单个课程进行分类的能力。对于一类分类,分析将紧紧关注感兴趣的类,而资源和精力却不针对其他类,并且有机会从小型培训集中获得高度准确的分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号