首页> 外文OA文献 >Analysis and Parameterization of Triangulated Surfaces
【2h】

Analysis and Parameterization of Triangulated Surfaces

机译:三角曲面的分析和参数化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation deals with the analysis and parameterization of surfaces represented by triangle meshes, that is, piecewise linear surfaces which enable a simple representation of 3D models commonly used in mathematics and computer science. Providing equivalent and high-level representations of a 3D triangle mesh M is of basic importance for approaching different computational problems and applications in the research fields of Computational Geometry, Computer Graphics, Geometry Processing, and Shape Modeling. The aim of the thesis is to show how high-level representations of a given surface M can be used to find other high-level or equivalent descriptions of M and vice versa. Furthermore, this analysis is related to the study of local and global properties of triangle meshes depending on the information that we want to capture and needed by the application context. The local analysis of an arbitrary triangle mesh M is based on a multi-scale segmentation of M together with the induced local parameterization, where we replace the common hypothesis of decomposing M into a family of disc-like patches (i.e., 0-genus and one boundary component) with a feature-based segmentation of M into regions of 0-genus without constraining the number of boundary components of each patch. This choice and extension is motivated by the necessity of identifying surface patches with features, of reducing the parameterization distortion, and of better supporting standard applications of the parameterization such as remeshing or more generally surface approximation, texture mapping, and compression. The global analysis, characterization, and abstraction of M take into account its topological and geometric aspects represented by the combinatorial structure of M (i.e., the mesh connectivity) with the associated embedding in R^3. Duality and dual Laplacian smoothing are the first characterizations of M presented with the final aim of a better understanding of the relations between mesh connectivity and geometry, as discussed by several works in this research area, and extended in the thesis to the case of 3D parameterization. The global analysis of M has been also approached by defining a real function on M which induces a Reeb graph invariant with respect to affine transformations and best suited for applications such as shape matching and comparison. Morse theory and the Reeb graph were also used for supporting a new and simple method for solving the global parameterization problem, that is, the search of a cut graph of an arbitrary triangle mesh M. The main characteristics of the proposed approach with respect to previous work are its capability of defining a family of cut graphs, instead of just one cut, of bordered and closed surfaces which are treated with a unique approach. Furthermore, each cut graph is smooth and the way it is built is based on the cutting procedure of 0-genus surfaces that was used for the local parameterization of M. As discussed in the thesis, defining a family of cut graphs provides a great flexibility and effective simplifications of the analysis, modeling, and visualization of (time-depending) scalar and vector fields; in fact, the global parameterization of M enables to reduce the
机译:本文主要研究和分析由三角形网格表示的曲面,即分段线性曲面,它可以简单地表示数学和计算机科学中常用的3D模型。提供3D三角形网格M的等效和高级表示形式对于解决不同的计算问题和在计算几何,计算机图形学,几何处理和形状建模研究领域中的应用至关重要。本文的目的是说明如何使用给定表面M的高级表示来发现M的其他高级描述或等效描述,反之亦然。此外,此分析与三角形网格的局部和全局属性的研究有关,这取决于我们想要捕获的信息以及应用程序上下文所需的信息。任意三角形网格M的局部分析基于M的多尺度分割以及诱导的局部参数化,其中我们替换了将M分解为一系列盘状斑块(即0属和一个边界成分),将基于特征的M划分为0属区域,而不会限制每个面片的边界成分的数量。这种选择和扩展的动机是,需要识别具有特征的表面补丁,减少参数化失真以及更好地支持参数化的标准应用程序,例如重新网格化或更一般地说是表面近似,纹理贴图和压缩。 M的全局分析,特征描述和抽象考虑了M的拓扑和几何特征,这些拓扑和几何方面由M的组合结构(即网格连通性)以及相关的嵌入R ^ 3表示。对偶和双重拉普拉斯平滑是M的第一个表征,其最终目的是更好地理解网格连通性和几何之间的关系,正如该研究领域的一些工作所讨论的那样,并在本文中扩展到了3D参数化的情况。通过在M上定义一个实函数来进行M的全局分析,该实函数引起关于Rene变换的Reeb图不变,并且最适合诸如形状匹配和比较之类的应用。莫尔斯理论和Reeb图还用于支持一种新的简单方法来解决全局参数化问题,即搜索任意三角形网格M的割图。与以前的方法相比,该方法的主要特征它的工作是它能够定义一组切割图,而不只是一个切割图,这些切割图的边界和闭合曲面采用独特的方法进行处理。此外,每个切割图都是平滑的,其构建方式基于用于M的局部参数化的0属曲面的切割程序。如论文中所讨论的,定义切割图族提供了极大的灵活性有效地简化标量和矢量场的分析,建模和可视化;实际上,M的全局参数化可以减少

著录项

  • 作者

    Patan? Giuseppe;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号