首页> 外文OA文献 >Large-Scale Classification by an Approximate Least Squares One-Class Support Vector Machine Ensemble
【2h】

Large-Scale Classification by an Approximate Least Squares One-Class Support Vector Machine Ensemble

机译:近似最小二乘一类支持向量机集合的大规模分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large-scale multi-class classification problems involve an enormous amount of training data that make the application of classical non-linear classification algorithms difficult. In addition, such multi-class classification problems are usually formed by a considerable number of classes. This makes the application of the popular one-versus-rest binary classifiers fusion scheme adopted by most state-of-the-art approaches difficult. In this paper, in order to overcome the high computational cost of multi-class non-linear classification approaches, we adopt an ensemble of approximate non-linear one-class classifiers. To this end, we propose a new scalable solution for the Least Squares One-Class Support Vector Machine classifier by following an approximate kernel approach. We evaluated the proposed method in big data visual classification problems, where it is shown thatit is able to achieve satisfactory performance, while significantly reducing the overall computational and memory costs.
机译:大规模的多类别分类问题涉及大量的训练数据,这使得经典非线性分类算法的应用变得困难。另外,这种多类别分类问题通常由相当多的类别形成。这使得大多数最新方法所采用的流行的“一休”二元分类器融合方案难以应用。在本文中,为了克服多类非线性分类方法的高计算成本,我们采用近似非线性一类分类器的集合。为此,我们通过遵循近似内核方法,为最小二乘一类支持向量机分类器提出了一种新的可扩展解决方案。我们在大数据视觉分类问题中评估了该方法,结果表明该方法能够实现令人满意的性能,同时显着降低了总体计算和存储成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号