首页> 外文OA文献 >Advanced numerical modelling techniques for the structural design of composite tidal turbine blades
【2h】

Advanced numerical modelling techniques for the structural design of composite tidal turbine blades

机译:复合潮汐涡轮机叶片结构设计的高级数值建模技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tidal stream turbine blades must withstand both extreme one-off loads and severe fatigue loads during their 20–25 year required lifetimes in harsh marine environments. This necessitates the use of high-strength fibre reinforced composite materials to provide the required stiffness, strength and fatigue life, as well as resistance to corrosion, whilst minimising the mass of material required for blade construction and allowing its geometric form to provide the required hydrodynamic performance. Although composites provide superior performance to metals, potential failure mechanisms are more complicated and difficult to predict. A dominant failure mechanism is interfacial failure (delamination) between the composite layers (plies). This paper demonstrates how the development of numerical techniques for modelling the growth of interfacial cracks can aid the design process, allowing the effects on crack growth from potential manufacturing defects and the effect of stacking sequence of composite plies to be analysed. This can ultimately lead to reduced design safety margins and a reduction in the mass of material required for blade manufacture, essential for reducing lifecycle costs. Although the examples provided in this article are specific to tidal turbine blades, the analysis techniques are applicable to all composite structures where fatigue delamination is a primary failure concern.
机译:在恶劣的海洋环境中,潮汐流涡轮叶片必须在20–25年的使用寿命内承受极端的一次性载荷和严重的疲劳载荷。这就需要使用高强度纤维增强复合材料来提供所需的刚度,强度和疲劳寿命,以及耐腐蚀性能,同时最大程度地减少叶片构造所需的材料质量,并使其几何形状能够提供所需的流体动力。性能。尽管复合材料提供了优于金属的性能,但潜在的失效机制更加复杂且难以预测。主导失效机制是复合层(层)之间的界面失效(分层)。本文说明了用于模拟界面裂纹扩展的数值技术的发展如何有助于设计过程,从而可以分析潜在的制造缺陷对裂纹扩展的影响以及复合层的堆叠顺序的影响。这最终会导致设计安全裕度降低,以及叶片制造所需的材料量减少,这对于降低生命周期成本至关重要。尽管本文提供的示例特定于潮汐涡轮机叶片,但分析技术适用于疲劳分层是主要故障关注点的所有复合结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号