首页> 外文OA文献 >Probabilistic Process Monitoring in Process-Aware Information Systems
【2h】

Probabilistic Process Monitoring in Process-Aware Information Systems

机译:过程感知信息系统中的概率过程监视

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex information systems generate large amount of event logs that represent the states of system dynamics. By monitoring these logs, we can learn the process models that describe the underlying business procedures, predict the future development of the systems, and check whether the process models match the expected ones. Most of the existing process monitoring techniques are derived from the workflow management systems used to cope with the logs generated by systems with deterministic outcomes. In this dissertation, however, I consider novel techniques that handle event log data, monitor system deviations, and infer the development of systems based on probabilistic process models. In particular, I present a novel process monitoring approach based on maximizing the information divergences of the system state dynamics and demonstrate its efficiency in detecting abrupt changes, as well as long-term system deviation. In addition, a new process modeling technique, Classification Tree hidden (semi-) Markov Model (CTHMM), is proposed. I show that CTHMM derived from Classification and Regression Tree and hidden semi-Markov model (HSMM) with hidden system states identified by Classification Tree can help discover and predict relevant system state sequences in temporal-probabilistic manners. The main contributions of this dissertation can be summarized as follows: 1) a new approach used in process monitoring that helps detect anomalies of dynamic systems from the point of views of both system change-point and long-term system deviation; 2) a unique HMM/HSMM learning technique that solves the problem of hidden state splitting and estimates HMM/HSMM parameters simultaneously; 3) a novel temporal-probabilistic process model that generates human-comprehensible IF-THEN system state definitions used to help infer evolutions of discrete dynamic systems.
机译:复杂的信息系统会生成大量事件日志,这些事件日志表示系统动态状态。通过监视这些日志,我们可以学习描述基本业务流程的流程模型,预测系统的未来发展,并检查流程模型是否与预期的相匹配。现有的大多数过程监控技术均源自用于处理具有确定性结果的系统生成的日志的工作流管理系统。然而,在本文中,我考虑了处理事件日志数据,监视系统偏差并基于概率过程模型推断系统开发的新颖技术。特别是,我提出了一种基于最大化系统状态动态信息差异的新颖过程监控方法,并展示了其在检测突变和长期系统偏差方面的效率。另外,提出了一种新的过程建模技术,即分类树隐藏(半)马尔可夫模型(CTHMM)。我表明,从分类和回归树以及具有由分类树标识的隐藏系统状态的隐藏半马尔可夫模型(HSMM)派生的CTHMM可以以时间概率方式帮助发现和预测相关的系统状态序列。本文的主要工作概括如下:1)一种新的过程监控方法,可以从系统变化点和长期系统偏差的角度帮助检测动态系统异常。 2)独特的HMM / HSMM学习技术,解决了隐藏状态分裂问题并同时估计HMM / HSMM参数; 3)一种新颖的时间概率过程模型,该模型生成人类可理解的IF-THEN系统状态定义,用于帮助推断离散动态系统的演化。

著录项

  • 作者

    Kang Yihuang;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号