首页> 外文OA文献 >Radio Frequency Antenna Designs and Methodologies for Human Brain Computer Interface and Ultrahigh Field Magnetic Resonance Imaging
【2h】

Radio Frequency Antenna Designs and Methodologies for Human Brain Computer Interface and Ultrahigh Field Magnetic Resonance Imaging

机译:人脑计算机接口和超高场磁共振成像的射频天线设计和方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brain Computer Interface (BCI) and Magnetic Resonance Imaging (MRI) are two powerful medical diagnostic techniques used for human brain studies. However, wired power connection is a huge impediment for the clinical application of BCI, and most current BCIs have only been designed for immobile users in a carefully controlled environment. For the ultrahigh field (≥7T) MRI, limitations such as inhomogeneous distribution of the transmit field (B1+) and potential high power deposition inside the human tissues have not yet been fully combated by existing methods and are central in making ultrahigh field MRI practical for clinical use. In this dissertation, radio frequency (RF) methods are applied and RF antennas/coils are designed and optimized in order to overcome these barriers. These methods include: 1) designing implanted miniature antennas to transmit power wirelessly for implanted BCIs; 2) optimizing a new 20-channel transmit array design for 7 Tesla MRI neuroimaging applications; and 3) developing and implementing a dual-optimization method to design the RF shielding for fast MRI imaging methods. udFirst, three miniaturized implanted antennas are designed and results obtained using finite difference time domain (FDTD) simulations demonstrate that a maximum RF power of up to 1.8 miliwatts can be received at 2 GHz when the antennas are implanted at the dura, without violating the government safety regulations. Second, Eigenmode arrangement of the 20-channel transmit coil allows control of RF excitation not only at the XY plane but also along the Z direction. The presented results show the optimized eigenmode could generate 3D uniform transmit B1+ excitations. The optimization results have been verified by in-vivo experiments, and they are applied with different protocol sequences on a Siemens 7 Tesla MRI human whole body scanner equipped with 8 parallel transmit channels. Third, echo planar imaging (EPI), B1+ maps and S matrix measurements are used to verify that the proposed RF shielding can suppress the eddy currents while maintaining the RF characteristics of the transmit coil. udThe contributions presented here will provide a long-term and safer power transmission path compared to the wire-connected implanted BCIs and will bring ultrahigh field MRI technology closer to clinical applications.ud
机译:脑计算机接口(BCI)和磁共振成像(MRI)是用于人脑研究的两种强大的医学诊断技术。但是,有线电源连接对于BCI的临床应用是一个巨大的障碍,并且大多数当前的BCI只是为在严格控制的环境中不动的用户而设计的。对于超高场(≥7T)MRI,现有方法尚未完全克服诸如透射场(B1 +)的不均匀分布和人体组织内潜在的高功率沉积等限制,对于使超高场MRI实用化至关重要临床使用。本文采用射频(RF)方法,设计并优化了RF天线/线圈,以克服这些障碍。这些方法包括:1)设计植入的微型天线,以无线方式为植入的BCI发送功率。 2)为7种Tesla MRI神经成像应用优化新的20通道发射阵列设计; 3)开发和实施双重优化方法来设计用于快速MRI成像方法的RF屏蔽。首先,设计了三种微型植入式天线,并使用时差有限时域(FDTD)仿真获得的结果表明,将天线植入硬脑膜时,在2 GHz频率下可以接收高达1.8毫瓦的最大RF功率。政府安全法规。其次,20通道发射线圈的本征模式布置不仅可以控制XY平面的射频激励,还可以控制Z方向的射频激励。提出的结果表明,优化的本征模式可以生成3D均匀发射B1 +激发。优化结果已通过体内实验验证,并将其以不同的协议序列应用于配备了8个并行发射通道的Siemens 7 Tesla MRI人体全身扫描仪。第三,使用回波平面成像(EPI),B1 +映射和S矩阵测量来验证所提出的RF屏蔽可以抑制涡流,同时保持发射线圈的RF特性。 ud与有线植入的BCI相比,此处提出的贡献将提供长期且更安全的动力传输路径,并使超高场MRI技术更接近于临床应用。

著录项

  • 作者

    Zhao Yujuan;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号