首页> 外文OA文献 >THE APPLICATION OF METABOLIC NETWORK ANALYSIS IN UNDERSTANDING AND TARGETING METABOLISM FOR DRUG DISCOVERY
【2h】

THE APPLICATION OF METABOLIC NETWORK ANALYSIS IN UNDERSTANDING AND TARGETING METABOLISM FOR DRUG DISCOVERY

机译:代谢网络分析在药物发现理解和靶向代谢中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Metabolic networks provide a vital framework for understanding the cellular metabolism in both physiological and pathophysiological states, which will ultimately facilitate network analysis-based drug discovery. In this thesis, we aim to employ a metabolic network analysis approach to study cancer metabolism (a pathophysiological state) and the metabolism of the bacterial pathogen, S. aureus (a physiological state), in order to understand, predict, and ultimately target cell metabolism for drug discovery. Cancer cells have distinct metabolism that highly depend on glycolysis instead of mitochondrial oxidative phosphorylation alone, even in the presence of oxygen, also called aerobic glycolysis or the Warburg effect, which may offer novel therapeutic opportunities. However, the origin of the Warburg effect is only partially understood. To understand the origin of cancer metabolism, our theoretical collaborator, Prof. Alexei Vazquez, developed a reduced flux balance model of human cell metabolism incorporating the macromolecular crowding (MC) constraint and the maximum glucose uptake constraint. The simulations successfully captured the main characteristics of cancer metabolism (aerobic glycolysis), indicating that MC constraint may be a potential origin of the Warburg effect. Notably, when we experimentally tested the model with mammalian cells from low to high growth rates as a proxy of MC alteration, we find that, consistent with the model, faster growing cells indeed have increased aerobic glycolysis. Moreover, the metabolic network analysis approach has also been shown to be capable of predicting the drug targets against pathogen metabolism when completely reconstructed metabolic networks are available. We deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and demonstrated experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability. Our results indicate that the metabolic network analysis approach is able to facilitate the understanding of cellular metabolism by identifying potential constraints and predicting as well as ultimately targeting the metabolism of the organisms whose complete metabolic networks are available through the seamless integration of virtual screening with experimental validation.
机译:代谢网络为理解生理和病理生理状态下的细胞代谢提供了至关重要的框架,最终将促进基于网络分析的药物发现。在本文中,我们旨在采用代谢网络分析方法来研究癌症代谢(病理生理状态)和细菌病原体金黄色葡萄球菌(生理状态)的代谢,以了解,预测并最终靶向细胞用于药物发现的新陈代谢。癌细胞具有独特的新陈代谢,这些新陈代谢高度依赖于糖酵解,而不是单独的线粒体氧化磷酸化,即使在存在氧气的情况下,也被称为有氧糖酵解或Warburg效应,这可能会提供新的治疗机会。然而,沃伯格效应的起源仅被部分理解。为了了解癌症代谢的起源,我们的理论合作者Alexei Vazquez教授开发了一种人类细胞代谢的减少通量平衡模型,该模型结合了大分子拥挤(MC)约束和最大葡萄糖摄取约束。模拟成功捕获了癌症代谢(有氧糖酵解)的主要特征,表明MC约束可能是Warburg效应的潜在起源。值得注意的是,当我们用低至高生长速率的哺乳动物细胞作为MC改变的代理进行实验测试时,我们发现与该模型一致的是,生长更快的细胞确实增加了有氧糖酵解。此外,当完全重建的代谢网络可用时,代谢网络分析方法也已被证明能够预测针对病原体代谢的药物靶标。我们通过鉴定在其代谢网络中共有的组织特异性或统一必需的代谢反应,推导了大肠杆菌和金黄色葡萄球菌的常见抗生素靶标。然后,我们通过虚拟筛选这些反应的几种酶的数十种潜在抑制剂进行了预测,并通过实验证明了其中的一部分抑制了体外酶的活性和细菌细胞的活力。我们的结果表明,代谢网络分析方法能够通过识别潜在的限制因素并预测并最终针对具有完整代谢网络的生物的代谢,从而促进对细胞代谢的理解,这些生物的完整代谢网络可通过虚拟筛选与实验验证的无缝集成来实现。 。

著录项

  • 作者

    Liu Jiangxia;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号