首页> 外文OA文献 >STUDY OF ULTRA-THIN ZINC OXIDE EPILAYER GROWTH AND UV DETECTION PROPERTIES
【2h】

STUDY OF ULTRA-THIN ZINC OXIDE EPILAYER GROWTH AND UV DETECTION PROPERTIES

机译:超薄氧化锌外延层生长及紫外检测性能的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ZnO is a wide bandgap (3.4 eV) II-VI semiconductor with large exciton binding energy (60 meV), and holds a strong potential for light emitting/detecting or nonlinear optical devices in the UV range. Essential to development of such devices is establishment of proper methods to grow/synthesize high quality materials and structures whose properties (electrical, optical, etc.) can be tailored to specific device application. Ultra-thin (nanometer-scale) ZnO films, for example, are of particular interest, due to the device potential involving the quantum confinement effects. In this study, we have investigated the early-stage growth mode of ZnO on sapphire. The evolution of structural, morphological, and electrical properties was characterized with 2 to 20-nm-thick ZnO films grown at 700 oC with radio-frequency magnetron sputtering. X-ray diffraction results show that ZnO initially grows highly strained and epitaxial to substrate with negligible degree of mosaicity for up to ~5 nm thickness, despite the occurrence of partial strain-relaxation which indicates an incommensurate growth involving misfit dislocations. Then the mosaicity (out-of-plane tilt) develops as film thickness increases to around 10 nm. Both the atomic force microscopy (AFM) and resistivity measurement results suggest that ZnO grows as mostly discontinuous (electrically and physically) three-dimensional (3D) nano-islands at 2 to 5 nm thickness, and then the islands coalesce/merge and become connected, fully covering the substrate surface at 5 to 10 nm. The optoelectronic properties of nanometer-thickness films are often dominated by the surface-mediated phenomena due to the large surface/volume ratio. It is well known that ZnO exhibits a strong chemisorption behavior through surface. While this phenomenon could be beneficial to some applications (such as chemical/gas sensing), it would also be desirable to control/alleviate this phenomenon in order to observe the effects originating from the dimensional and size confinement of intrinsic materials. We have investigated an oxygen-plasma treatment as a possible means of modifying/controlling the surface properties of ultra-thin (~20-nm-thick) ZnO epitaxial films. Oxygen plasma treatment is found to dramatically enhance the UV detection properties of ZnO, reducing the decay time constant and increasing the on/off ratio. Thus, for the first time, we have developed and demonstrated high speed, high reponsivity UV photodetectors with extremely low dark current using a single layer of nanometer-thick ZnO.A model, based on modulation mechanism of the conductive volume and carriers, has been developed to explain the power dependence of the UV responsivity of ZnO photodetectors. In this model, the photocurrent decay process is analyzed with oxygen chemisorption and thermionic theory. The results suggest that the plasma treatment reduces the oxygen vacancy concentration at the surface and in the near-surface bulk of ZnO, which in turn reduces the surface band bending and therefore the chemisorption effects. Oxygen plasma treatment is considered an effective way of making nanometer-scale ZnO viable for high performance UV optoelectronic devices. The effects observed in this study are also expected to be observable in other low-dimensional structures of ZnO, such as quantum dots, nano wires and ribbons.
机译:ZnO是宽带隙(3.4 eV)的II-VI半导体,具有大的激子结合能(60 meV),在紫外线范围内具有强大的发光/检测或非线性光学器件的潜力。开发这种设备的关键是建立适当的方法来生长/合成高质量的材料和结构,这些材料和结构的特性(电学,光学等)可以根据特定的设备应用进行定制。例如,由于涉及量子限制效应的器件电势,超薄(纳米级)ZnO薄膜特别受关注。在这项研究中,我们研究了蓝宝石上ZnO的早期生长模式。用射频磁控溅射在700 oC下生长的2至20 nm厚的ZnO膜表征了结构,形态和电学性质的演变。 X射线衍射结果表明,ZnO最初生长时高度应变,并向基板外延,其镶嵌度可忽略不计,最大厚度可达〜5 nm,尽管发生了部分应变松弛,这表明不适当的生长涉及错配位错。然后,随着膜厚度增加到10 nm左右,镶嵌性(面外倾斜)就会发展。原子力显微镜(AFM)和电阻率测量结果均表明,ZnO在2至5 nm厚度处生长为大部分不连续的(电和物理)三维(3D)纳米岛,然后这些岛聚结/合并并连接在一起完全覆盖5至10 nm的基板表面。由于大的表面/体积比,纳米厚度的薄膜的光电性能通常受表面介导的现象支配。众所周知,ZnO在表面上表现出很强的化学吸附行为。虽然此现象可能对某些应用程序(例如化学/气体传感)有利,但也希望控制/减轻该现象,以便观察源于本征材料尺寸和尺寸限制的影响。我们已经研究了氧等离子体处理作为修改/控制超薄(约20nm厚)ZnO外延膜表面性能的可能方法。发现氧等离子体处理可以显着增强ZnO的紫外线检测性能,减少衰减时间常数并增加开/关比。因此,我们首次使用单层纳米厚度的ZnO开发并演示了具有极低暗电流的高速,高响应性的紫外线光电探测器。基于导电体积和载流子的调制机制的模型已经建立。开发用于解释ZnO光电探测器的紫外线响应的功率依赖性。在该模型中,利用氧化学吸附和热电子理论分析了光电流衰减过程。结果表明,等离子体处理降低了ZnO的表面和近表面本体中的氧空位浓度,进而降低了表面带的弯曲并因此降低了化学吸附作用。氧等离子体处理被认为是使纳米级ZnO适用于高性能UV光电器件的有效方法。在这项研究中观察到的效果也有望在其他低维ZnO结构中观察到,例如量子点,纳米线和碳带。

著录项

  • 作者

    Liu Mingjiao;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号