首页> 外文OA文献 >APPLICATIONS OF STATISTICAL ANALYSIS TECHNIQUES FOR NEUROIMAGING DATA: RANDOMIZED SINGULAR VALUE DECOMPOSITION FOR PARTIAL LEAST SQUARES ANALYSIS AND THIN PLATE SPLINES FOR SPATIAL NORMALIZATION
【2h】

APPLICATIONS OF STATISTICAL ANALYSIS TECHNIQUES FOR NEUROIMAGING DATA: RANDOMIZED SINGULAR VALUE DECOMPOSITION FOR PARTIAL LEAST SQUARES ANALYSIS AND THIN PLATE SPLINES FOR SPATIAL NORMALIZATION

机译:统计分析技术在神经成像数据中的应用:偏最小二乘的随机奇异值分解和空间标准化的薄板样条

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation applies two statistical analysis techniques for neuroimaging data. The first aim of this dissertation is to apply randomized singular value decomposition for the approximation of the top singular vectors of the singular value decomposition of a large matrix. Randomized singular value decomposition is an algorithm that approximates the top singular vectors of a matrix given a subset of its rows or columns. Several statistical applications, such as partial least squares, require the computation of the singular value decomposition of a matrix. Statistical packages have built in functions that can compute the singular value decomposition of a matrix. In many applications, however, computing the SVD of a matrix is not possible because computer memory requirements associated with matrix allocation is high, limiting its use in high-dimensional settings. Neuroimaging studies can generate measurements for hundreds of thousands of voxels from an image. Therefore, performing partial least squares analysis on these datasets is not possible using statistical packages. Simulation studies showed that the randomized singular value decomposition method provides a good approximation of the top singular vectors and therefore a good approximation of the partial least squares summary scores. This method is significant for public health since it allows researchers to perform statistical analysis at a voxel level with only a sample of a large dataset.The second aim is to apply a thin plate spline method for spatial normalization of structural magnetic resonance images. Spatial normalization is the process of standardizing images of different subjects into the same anatomical space. The idea behind this procedure is to match each data volume from a subject to a template, so that specific anatomic structures will occupy the same voxels. Spatial normalization is a critical step in the analysis of brain imaging data since it produces the "raw" data for subsequent statistical analyses.
机译:本文对神经影像数据应用了两种统计分析技术。本文的首要目的是将随机奇异值分解应用于大型矩阵奇异值分解的顶部奇异矢量的逼近。随机奇异值分解是一种算法,该算法在给定矩阵行或列的子集的情况下,近似矩阵的顶级奇异矢量。某些统计应用程序(例如偏最小二乘)需要计算矩阵的奇异值分解。统计软件包具有内置函数,可以计算矩阵的奇异值分解。但是,在许多应用中,无法计算矩阵的SVD,因为与矩阵分配相关的计算机内存要求很高,从而限制了其在高维设置中的使用。神经影像研究可以从图像生成数十万个体素的测量值。因此,使用统计包无法对这些数据集执行偏最小二乘分析。仿真研究表明,随机奇异值分解方法可以很好地逼近顶部奇异向量,因此可以很好地逼近部分最小二乘汇总分数。该方法对公众健康具有重要意义,因为它允许研究人员仅对大型数据集的样本进行体素级别的统计分析。第二个目标是应用薄板样条方法对结构磁共振图像进行空间归一化。空间归一化是将不同对象的图像标准化到同一解剖空间中的过程。该过程背后的想法是将受试者的每个数据量与模板相匹配,以便特定的解剖结构将占据相同的体素。空间归一化是分析脑成像数据的关键步骤,因为它会为后续的统计分析提供“原始”数据。

著录项

  • 作者

    Rosario-Rivera Bedda Lynn;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号