首页> 外文OA文献 >Multiscale Methods for Stochastic Collocation of Mixed Finite Elements for Flow in Porous Media
【2h】

Multiscale Methods for Stochastic Collocation of Mixed Finite Elements for Flow in Porous Media

机译:多孔介质中混合有限元随机配置的多尺度方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis contains methods for uncertainty quantification of flow in porous media through stochastic modeling. New parallel algorithms are described for both deterministic and stochastic model problems, and are shown to be computationally more efficient than existing approaches in many cases.First, we present a method that combines a mixed finite element spatial discretization with collocation in stochastic dimensions on a tensor product grid. The governing equations are based on Darcy's Law with stochastic permeability. A known covariance function is used to approximate the log permeability as a truncated Karhunen-Loeve expansion. A priori error analysis is performed and numerically verified.Second, we present a new implementation of a multiscale mortar mixed finite element method. The original algorithm uses non-overlapping domain decomposition to reformulate a fine scale problem as a coarse scale mortar interface problem. This system is then solved in parallel with an iterative method, requiring the solution to local subdomain problems on every interface iteration. Our modified implementation instead forms a Multiscale Flux Basis consisting of mortar functions that represent individual flux responses for each mortar degree of freedom, on each subdomain independently. We show this approach yields the same solution as the original method, and compare the computational workload with a balancing preconditioner.Third, we extend and combine the previous works as follows. Multiple rock types are modeled as nonstationary media with a sum of Karhunen-Loeve expansions. Very heterogeneous noise is handled via collocation on a sparse grid in high dimensions. Uncertainty quantification is parallelized by coupling a multiscale mortar mixed finite element discretization with stochastic collocation. We give three new algorithms to solve the resulting system. They use the original implementation, a deterministic Multiscale Flux Basis, and a stochastic Multiscale Flux Basis. Multiscale a priori error analysis is performed and numerically verified for single-phase flow. Fourth, we present a concurrent approach that uses the Multiscale Flux Basis as an interface preconditioner. We show the preconditioner significantly reduces the number of interface iterations, and describe how it can be used for stochastic collocation as well as two-phase flow simulations in both fully-implicit and IMPES models.
机译:本文包含了通过随机建模不确定性量化多孔介质中流动的方法。描述了确定性和随机模型问题的新并行算法,并且在许多情况下显示出比现有方法更有效的计算方法。首先,我们提出了一种将混合有限元空间离散化与张量随机维度上的搭配相结合的方法产品网格。控制方程基于具有随机磁导率的达西定律。已知的协方差函数用于将对数渗透率近似为截断的Karhunen-Loeve展开。进行了先验误差分析并进行了数值验证。其次,我们提出了一种多尺度砂浆混合有限元方法的新实现。原始算法使用非重叠域分解来将细粒度问题重新表示为粗粒度砂浆界面问题。然后,该系统与迭代方法并行求解,要求在每次接口迭代时都解决局部子域问题。相反,我们修改后的实现形式形成了一个多尺度通量基础,该基础由多个迫击炮函数组成,这些函数分别在每个子域上代表每个迫击炮自由度的各个磁通响应。我们展示了这种方法产生的解决方案与原始方法相同,并且将计算工作量与平衡前置条件进行了比较。第三,我们扩展并结合了以前的工作,如下所示。多种岩石类型被建模为具有Karhunen-Loeve扩展总和的非平稳介质。通过在高尺寸的稀疏网格上并置可以处理非常异类的噪声。通过将多比例砂浆混合有限元离散化与随机搭配耦合,可以使不确定性量化并行化。我们给出了三种新算法来求解结果系统。他们使用原始的实现,确定性的多尺度通量基础和随机的多尺度通量基础。执行多尺度先验误差分析,并对单相流进行数值验证。第四,我们提出了一种并行方法,该方法使用多尺度通量基础作为接口前置条件。我们展示了预处理器显着减少了接口迭代的次数,并描述了如何将其用于完全隐式和IMPES模型中的随机配置以及两相流模拟。

著录项

  • 作者

    Ganis Benjamin;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号