首页> 外文OA文献 >The Discrete Linear Chirp Transform and its Applications
【2h】

The Discrete Linear Chirp Transform and its Applications

机译:离散线性线性调频变换及其应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In many applications in signal processing, the discrete Fourier transform (DFT) plays a significant role in analyzing characteristics of stationary signals in the frequency domain. The DFT can be implemented in a very efficient way using the fast Fourier transform (FFT) algorithm. However, many actual signals by their nature are non--stationary signals which make the choice of the DFT to deal with such signals not appropriate. Alternative tools for analyzing non--stationary signals come with the development of time--frequency distributions (TFD). The Wigner--Ville distribution is a time--frequency distribution that represents linear chirps in an ideal way, but it has the problem of cross--terms which makes the analysis ofudsuch tools unacceptable for multi--component signals. In this dissertation, we develop three definitions of linear chirp transforms which are: the continuous linear chirp transform (CLCT), the discrete linear chirp transform (DLCT), and the discrete cosine chirp transform (DCCT). Most of this work focuses on the discrete linear chirp transform (DLCT) which can be considered a generalization of the DFT to analyze non--stationary signals. The DLCT is a joint frequency chirp--rate transformation, capable of locally representing signals in terms of linear chirps. Important properties of this transform are discussed and explored. The efficient implementation of the DLCT is given by taking advantage of the FFT algorithm. Since this novel transform can be implemented in a fast and efficient way, this would make the proposed transform a candidate to be used for many applications, including chirp rate estimation, signal compression, filtering, signal separation, elimination of the cross--terms in the Wigner--Ville distribution, and in communication systems. In this dissertation, we will explore some of these applications.
机译:在信号处理的许多应用中,离散傅里叶变换(DFT)在分析频域中平稳信号的特性中起着重要作用。 DFT可以使用快速傅里叶变换(FFT)算法以非常有效的方式实现。但是,许多实际信号本质上是非平稳信号,这使得DFT的选择不适合处理此类信号。时间频率分布(TFD)的发展带来了用于分析非平稳信号的替代工具。 Wigner-Ville分布是一种时间-频率分布,以理想的方式表示线性rp,但存在交叉项问题,这使得此类工具的分析对于多分量信号而言是不可接受的。本文提出了线性线性调频变换的三种定义:连续线性线性调频变换(CLCT),离散线性线性调频变换(DLCT)和离散余弦线性调频(DCCT)。大部分工作集中在离散线性线性调频变换(DLCT)上,可以将其视为DFT的泛化,以分析非平稳信号。 DLCT是联合频率线性调频率转换,能够以线性线性调频表示本地信号。讨论并探讨了此转换的重要属性。通过利用FFT算法,可以有效地实现DLCT。由于可以以快速有效的方式实现这种新颖的变换,因此这将使拟议的变换成为可用于许多应用的候选对象,包括线性调频率估计,信号压缩,滤波,信号分离,消除交叉项Wigner-Ville分布以及通信系统中。在本文中,我们将探讨其中的一些应用。

著录项

  • 作者

    Alkishriwo Osama;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号