首页> 外文OA文献 >Joint Modeling of Multivariate Ordinal Longitudinal Outcome
【2h】

Joint Modeling of Multivariate Ordinal Longitudinal Outcome

机译:多元有序纵向结果的联合建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Adherence to medication is critical to achieving effectiveness of any treatment. Poor adherence often results in lack of treatment effects, worsening of diseases and increased health care costs. Therefore, it has significant public health importance. However, determining factors that influence adherence behavior is complicated because adherence is often measured on multiple drugs over a long period of time, resulting in multivariate ordinal longitudinal outcome. In the first part of this dissertation, we present a joint model which assumes ordered outcomes arose from a partitioned latent multivariate normal process. This joint model provides a framework for analyzing multivariate ordered longitudinal data with a general multilevel association structure, covering both between and within outcome correlation within each individual. Simulation studies show that the estimators of regression parameters are more efficient than those obtained through fitting separate standard GEE for each outcome, though estimators from each method are unbiased. The proposed method also yields unbiased estimators for correlation parameters given the correct correlation structure. However, standard GEE estimators are biased when missing data are present and data are not missing completely at random (MCAR). In the second part of this dissertation, we apply inverse probability weighted (IPW) estimating equations to the proposed joint model to obtain consistent estimators when data are missing at random (MAR). Simulation studies show that IPW estimators are consistent when the missing model is correctly specified. Furthermore, we observe that fitting with correct correlation structures can also help reduce bias for standard GEE estimators. This demonstrates both a better correlation structure and a better missing model will reduce bias in the analysis of missing at random longitudinal data using IPW GEE. We illustrate application of the proposed joint model to the Virahep-C data.
机译:坚持用药对取得任何治疗效果至关重要。依从性差通常会导致治疗效果不足,疾病恶化和医疗费用增加。因此,它对公共卫生具有重要意义。但是,确定影响依从行为的因素很复杂,因为经常会长时间测量多种药物的依从性,从而导致有序的纵向多变量结果。在本文的第一部分中,我们提出了一个联合模型,该模型假设有序结果是由潜在的多变量正态分布过程产生的。这个联合模型提供了一个框架,用于分析具有一般多级关联结构的多元有序纵向数据,涵盖了每个个体内结果相关性之间和内部的相关性。仿真研究表明,尽管每种方法的估计量是无偏的,但回归参数的估计量比通过为每个结果拟合单独的标准GEE而获得的估计量更有效。给定正确的相关结构,所提出的方法还可以得出相关参数的无偏估计量。但是,当存在缺失数据且数据并非随机完全缺失(MCAR)时,标准GEE估计量会产生偏差。在本文的第二部分,我们将逆概率加权(IPW)估计方程应用于所提出的联合模型,以在数据(MAR)丢失时获得一致的估计。仿真研究表明,正确指定缺失模型后,IPW估计量是一致的。此外,我们观察到采用正确的相关结构进行拟合还可以帮助减少标准GEE估计量的偏差。这表明更好的相关结构和更好的缺失模型都将减少使用IPW GEE分析随机纵向数据缺失时的偏差。我们说明了拟议的联合模型对Virahep-C数据的应用。

著录项

  • 作者

    Jiang Zhen;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号