首页> 外文期刊>Lifetime Data Analysis >Joint modeling of longitudinal continuous, longitudinal ordinal, and time-to-event outcomes
【24h】

Joint modeling of longitudinal continuous, longitudinal ordinal, and time-to-event outcomes

机译:纵向连续,纵向和延时结果的联合建模

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an innovative method for jointly analyzing survival data and longitudinally measured continuous and ordinal data. We use a random effects accelerated failure time model for survival outcomes, a linear mixed model for continuous longitudinal outcomes and a proportional odds mixed model for ordinal longitudinal outcomes, where these outcome processes are linked through a set of association parameters. A primary objective of this study is to examine the effects of association parameters on the estimators of joint models. The model parameters are estimated by the method of maximum likelihood. The finite-sample properties of the estimators are studied using Monte Carlo simulations. The empirical study suggests that the degree of association among the outcome processes influences the bias, efficiency, and coverage probability of the estimators. Our proposed joint model estimators are approximately unbiased and produce smaller mean squared errors as compared to the estimators obtained from separate models. This work is motivated by a large multicenter study, referred to as the Genetic and Inflammatory Markers of Sepsis (GenIMS) study. We apply our proposed method to the GenlMS data analysis.
机译:在本文中,我们提出了一种创新方法,用于共同分析生存数据和纵向测量的连续和序数数据。我们使用随机效应加速失效时间模型进行生存结果,用于连续纵向结果的线性混合模型和序序纵向结果的比例差异混合模型,其中这些结果过程通过一组关联参数连接。本研究的主要目的是研究关联参数对联合模型估计的影响。模型参数由最大可能性的方法估算。使用Monte Carlo模拟研究估计器的有限样本性质。实证研究表明,结果过程之间的关联程度影响了估计器的偏差,效率和覆盖概率。与从单独模型中获得的估计相比,我们所提出的联合模型估计估计近似没有偏见并产生较小的平均平均误差。这项工作受到大型多中心的研究,称为败血症(Genims)研究的遗传和炎症标志物。我们将所提出的方法应用于Genlms数据分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号