首页> 外文OA文献 >VARIATIONS IN MICROARRAY BASED GENE EXPRESSION PROFILING: IDENTIFYING SOURCES AND IMPROVING RESULTS
【2h】

VARIATIONS IN MICROARRAY BASED GENE EXPRESSION PROFILING: IDENTIFYING SOURCES AND IMPROVING RESULTS

机译:基于微阵列的基因表达谱的变化:鉴定来源并改善结果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two major issues hinder the application of microarray based gene expression profiling in clinical laboratories as a diagnostic or prognostic tool. The first issue is the sheer volume and high-dimensionality of gene expression data from microarray experiments, which require advanced algorithms to extract meaningful gene expression patterns that correlate with biological impact. The second issue is the substantial amount of variation in microarray gene expression data, which impairs the performance of analysis method and makes sharing or integrating microarray data very difficult. Variations can be introduced by all possible sources including the DNA microarray technology itself and the experimental procedures. Many of these variations have not been characterized, measured, or linked to the sources. In the first part of this dissertation, a decision tree learning method was demonstrated to perform as well as more popularly accepted classification methods in partitioning cancer samples with microarray data. More importantly, results demonstrate that variation introduced into microarray data by tissue sampling and tissue handling compromised the performance of classification methods. In the second part of this dissertation, variations introduced by the T7 based in vitro transcription labeling methods were investigated in detail. Results demonstrated that individual amplification methods significantly biased gene expression data even though the methods compared in this study were all derivatives of the T7 RNA polymerase based in vitro transcription labeling approach. Variations observed can be partially explained by the number of biotinylated nucleotides used for labeling and the incubation time of the in vitro transcription experiments. These variations can generate discordant gene expression results even using the same RNA samples and cannot be corrected by post experiment analysis including advanced normalization techniques. Studies in this dissertation stress the concept that experimental and analytical methods must work together. This dissertation also emphasizes the importance of standardizing the DNA microarray technology and experimental procedures in order to optimize gene expression analysis and create quality standards compatible with the clinical application of this technology. These findings should be taken into account especially when comparing data from different platforms, and in standardizing protocols for clinical applications in pathology.
机译:两个主要问题阻碍了基于微阵列的基因表达谱在临床实验室中作为诊断或预后工具的应用。第一个问题是来自微阵列实验的基因表达数据的庞大和高维度,这需要先进的算法来提取与生物学影响相关的有意义的基因表达模式。第二个问题是微阵列基因表达数据的大量变化,这会削弱分析方法的性能,并使共享或整合微阵列数据变得非常困难。可以通过所有可能的来源引入变异,包括DNA微阵列技术本身和实验程序。这些变化中的许多变化尚未得到表征,测量或与来源相关联。在本文的第一部分中,证明了决策树学习方法在将癌症样本与微阵列数据进行分区方面表现出与普遍接受的分类方法一样的性能。更重要的是,结果表明,通过组织采样和组织处理引入微阵列数据的变异会影响分类方法的性能。在本文的第二部分,详细研究了基于T7的体外转录标记方法引入的变异。结果表明,即使在本研究中比较的方法都是基于T7 RNA聚合酶的体外转录标记方法的所有衍生物,单个扩增方法仍显着偏向基因表达数据。观察到的变化可以部分地通过用于标记的生物素化核苷酸的数量和体外转录实验的孵育时间来解释。即使使用相同的RNA样品,这些变异也可能产生不一致的基因表达结果,并且无法通过包括高级归一化技术在内的实验后分析进行校正。本文的研究强调了实验方法和分析方法必须协同工作的概念。本文还强调了标准化DNA微阵列技术和实验程序的重要性,以优化基因表达分析并创建与该技术的临床应用相适应的质量标准。特别是在比较来自不同平台的数据时以及在病理学临床应用的标准化协议中,应特别考虑这些发现。

著录项

  • 作者

    Ma Changqing;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号