首页> 外文OA文献 >Computational Inverse Solution Strategies for Characterization of Localized Variations of Material Properties in Solids and Structures
【2h】

Computational Inverse Solution Strategies for Characterization of Localized Variations of Material Properties in Solids and Structures

机译:表征固体和结构中材料特性局部变化的计算逆解策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational inverse characterization approaches that combine computational physical modeling and nonlinear optimization minimizing the difference between measurements from experimental testing and the responses from the computational model are uniquely well-suited for quantitative characterization of structures and systems for a variety of engineering applications. Potential applications that are suited for computational inverse characterization range from damage identification of civil structures to elastography of biological tissue. However, certain challenges, primarily relating to accuracy, efficiency, and stability, come along with any computational inverse characterization approach. As such, proper application-specific formulation of the inverse problem, including parameterization of the field to be inversely determined and selection/implementation of the optimization approach are critical to ensuring an accurate solution can be estimated with minimal (i.e. practically applicable) computational expense.udThe present work investigates strategies to optimally utilize the available measurement data in combination with a priori information about the nature of the unknown properties to maximize the efficiency and accuracy of the solution procedure for applications in inverse characterization of localized material property variations. First, a strategy using multi-objective optimization for inverse characterization of material loss (i.e., cracks or erosion) in structural components is presented. For this first component, the assumption is made that sufficient a priori information is available to restrict the parameterization of the unknown field to a known number and shape of material loss regions (i.e., the inverse problem is only required to identify size and location of these regions). Since this type of parameterization would typically be relatively compact (i.e., low number of parameters), the inverse problem is well suited for non-gradient-based optimization approaches, which can provide accuracy through global search capabilities. The multi-objective inverse solution approach shown divides the available measurement data into multiple competing objectives for the optimization process (rather than the typical single objective for all measurement data) and uses a stochastic multi-objective optimization technique to identify a Pareto front of potential solutions, and then select one "best" inverse solution estimate. Through simulated test problems of damage characterization, the multi-objective optimization approach is shown to provide increased solution estimate diversity during the search process, which results in a substantial improvement in the capabilities to traverse the optimization search space to minimize the measurement error and produce accurate damage size and location estimates in comparison with analogous single objective optimization approaches. An extension of this multi-objective approach is then presented that addresses problems for which the quantity of localized changes in properties is unknown. Thus, a self-evolving parameterization algorithm is presented that utilizes the substantial diversity in the Pareto front of potential solutions provided by the multi-objective optimization approach to build up the parameterization iteratively with an ad hoc clustering algorithm, and thereby determine the quantity, size, and location of localized changes in properties with minimal computational expense. Similarly as before, through simulated test problems based on characterization of damage within plates, the solution strategy with self-evolving parameterization is shown to provide an accurate and efficient process for the solution of inverse characterization of localized property changes.ududFor the second half of the present work, a substantial change in the inverse problem assumptions is made, in that the nature (i.e., shape) of the property variation is no longer assumed to be known as precisely a priori Thus, a more general (e.g., mesh-based) parameterization of the unknown field is needed, which would typically come at a cost of significantly increased computational expense and/or loss of solution uniqueness. To balance the generalization of the approach and still utilize some amount of the knowledge that the solution is localized in nature, while maintaining efficiency, a hybrid compact-generalized parameterization approach is presented. The initial incarnation of this hybrid approach combines a machine learning data reconstruction strategy known as gappy proper orthogonal decomposition (POD) with a least-squares direct inversion approach to estimate material stiffness distribution in solids (i.e., to solve elastography problems). The direct inversion approach uses a generalized mesh-based parameterization of the unknown field, but full-field response measurements (i.e., measurements everywhere in the solid) are required, which are not available for most practical inverse characterization problems. Therefore, the gappy POD technique first identifies the pattern of potential response fields of the solid through a collection of a priori forward numerical analyses of the solid response with a specified compact parameterization and a corresponding collection of arbitrarily generated parameter sets. Once the pattern is identified, the gappy POD technique is able to use the available partial-field measurement data to estimate the full-field response of the solid to be used by the direct inversion. Thus, the computational cost of the inverse characterization is negligible once the gappy POD process has been completed. Through simulated test problems relating to characterization of inclusions in solids, the direct inversion approach with gappy POD is shown to provide highly efficient and relatively accurate inverse characterization results for the prediction of Young's modulus distributions from partial-field measurement data. This direct inversion approach is further validated through an example problem regarding characterization of the layered stiffness properties of an engineered vessel from ultrasound measurements. Lastly, an extension of this hybrid approach is presented that uses the characterization results provided by the previous direct inversion approach as the initial estimate for a gradient-based optimization process to further refine/improve the inverse solution estimate. In addition, the adjoint method is used to calculate the gradient for the optimization process with minimal computational expense to maintain the overall computational efficiency of the inverse solution process. Again, through simulated test problems based on the characterization of localized, but arbitrarily shaped, inclusions within solids, the three-step (gappy POD - direct inversion - gradient-based optimization) inverse characterization approach is shown to efficiently provide accurate and relatively unique inverse characterization estimates for various types of inclusions regardless of inclusion geometry and quantity.
机译:将计算物理模型与非线性优化相结合的计算逆特征化方法可最大程度地减少实验测试的测量值与计算模型的响应之间的差异,非常适合用于各种工程应用的结构和系统的定量表征。适于计算逆特性表征的潜在应用范围包括从土木结构的损坏识别到生物组织的弹性成像。但是,任何与计算逆表征有关的方法都会带来一些挑战,主要涉及准确性,效率和稳定性。这样,反问题的适当的特定于应用的公式化,包括要反确定的字段的参数化以及优化方法的选择/实现,对于确保可以用最小的(即,实际适用的)计算费用来估计准确的解决方案至关重要。 ud本工作研究了与未知特性性质有关的先验信息,以最佳利用可利用的测量数据的策略,以最大化用于局部材料特性变化的逆表征的求解程序的效率和准确性。首先,提出了一种使用多目标优化来对结构部件中的材料损失(即裂缝或腐蚀)进行反向表征的策略。对于第一个组件,假定有足够的先验信息可用于将未知场的参数化限制为已知数量和形状的材料损失区域(即,仅需要逆问题即可识别出这些损失的大小和位置)地区)。由于这种类型的参数化通常比较紧凑(即参数数量少),因此反问题非常适合基于非梯度的优化方法,该方法可以通过全局搜索功能提供准确性。所示的多目标逆解决方案方法将可用的测量数据分为多个竞争目标以进行优化过程(而不是所有测量数据的典型单个目标),并使用随机多目标优化技术来识别潜在解决方案的帕累托前沿,然后选择一个“最佳”逆解估计。通过损伤特征的模拟测试问题,多目标优化方法显示出在搜索过程中提供了更多的解决方案估计多样性,从而极大地提高了遍历优化搜索空间以最小化测量误差并产生准确结果的能力。与类似的单目标优化方法相比,损伤的大小和位置估计。然后提出了该多目标方法的扩展,该扩展解决了属性局部变化量未知的问题。因此,提出了一种自进化的参数化算法,该算法利用多目标优化方法提供的潜在解决方案的Pareto前沿的大量多样性,通过ad hoc聚类算法迭代地建立参数化,从而确定数量,大小,并以最小的计算费用定位属性的局部更改。与以前类似,通过基于板内损伤特征的模拟测试问题,具有自演化参数化的求解策略显示出为解决局部特性变化的反向特征提供了准确而有效的过程。在本工作的一半中,对逆问题的假设进行了实质性更改,因为不再将属性变化的性质(即形状)假定为精确地先验已知,因此,更一般的(例如网格)未知字段的基于参数的)参数化是必需的,这通常以显着增加的计算费用和/或解决方案唯一性的损失为代价。为了平衡该方法的一般性,并且仍然利用解决方案本质上是局部的知识,同时保持效率,提出了一种混合紧凑广义参数化方法。这种混合方法的最初体现是将机器学习数据重建策略(称为间隙适当正交分解(POD))与最小二乘直接反演方法相结合,以估计固体中的材料刚度分布(即解决弹性成像问题)。直接反演方法使用未知场的基于网格的广义参数化,但是需要全场响应测量(即,实体中各处的测量),不适用于大多数实际的逆表征问题。因此,空洞的POD技术首先通过对具有特定压缩参数化的固体响应进行先验正向数值分析的集合以及任意生成的参数集的相应集合,来识别固体的潜在响应场的模式。一旦确定了模式,便能使POD技术使用可用的部分场测量数据来估计直接反演将使用的固体的全场响应。因此,一旦完成了空洞的POD处理,逆表征的计算成本就可以忽略不计。通过与固体中夹杂物表征有关的模拟测试问题,显示了带间隙POD的直接反演方法可提供高效且相对准确的反表征结果,用于根据部分场测量数据预测杨氏模量分布。这种直接反演方法通过关于超声测量工程船分层刚度特性表征的示例问题得到了进一步验证。最后,提出了这种混合方法的扩展,该方法使用以前的直接反演方法提供的表征结果作为基于梯度的优化过程的初始估计,以进一步完善/改进逆解估计。另外,伴随方法用于以最小的计算费用来计算优化过程的梯度,以保持逆解过程的整体计算效率。再次,通过基于固体中局部但任意形状的夹杂物表征的模拟测试问题,三步法(胶布POD-直接反演-基于梯度的优化)逆向表征方法被证明可有效提供准确且相对独特的反演无论夹杂物的几何形状和数量如何,各种夹杂物的特征化估计都可以。

著录项

  • 作者

    Wang Mengyu;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号