首页> 外文OA文献 >Putting more genetics into genetic algorithms.
【2h】

Putting more genetics into genetic algorithms.

机译:将更多的遗传学纳入遗传算法。

摘要

The majority of current genetic algorithms (GAs), while inspired by natural evolutionary systems, are seldom viewed as biologically plausible models. This is not a criticism of GAs, but rather a reflection of choices made regarding the level of abstraction at which biological mechanisms are modeled, and a reflection of the more engineering-oriented goals of the evolutionary computation community. Understanding better and reducing this gap between GAs and genetics has been a central issue in an interdisciplinary project whose goal is to build GA-based computational models of viral evolution. The result is a system called Virtual Virus (VIV). VIV incorporates a number of more biologically plausible mechanisms, including a more flexible genotype-to-phenotype mapping. In VIV the genes are independent of position, and genomes can vary in length and may contain noncoding regions, as well as duplicative or competing genes. Initial computational studies with VIV have already revealed several emergent phenomena of both biological and computational interest. In the absence of any penalty based on genome length, VIV develops individuals with long genomes and also performs more poorly (from a problem-solving viewpoint) than when a length penalty is used. With a fixed linear length penalty, genome length tends to increase dramatically in the early phases of evolution and then decrease to a level based on the mutation rate. The plateau genome length (i.e., the average length of individuals in the final population) generally increases in response to an increase in the base mutation rate. When VIV converges, there tend to be many copies of good alternative genes within the individuals. We observed many instances of switching between active and inactive genes during the entire evolutionary process. These observations support the conclusion that noncoding regions serve as scratch space in which VIV can explore alternative gene values. These results represent a positive step in understanding how GAs might exploit more of the power and flexibility of biological evolution while simultaneously providing better tools for understanding evolving biological systems.
机译:尽管受到自然进化系统的启发,目前大多数遗传算法(GA)很少被视为生物学上可行的模型。这不是对GA的批评,而是对在建模生物学机制的抽象级别上做出的选择的反映,并且反映了进化计算社区更加面向工程的目标。在跨学科项目中,更好的理解并缩小GA与遗传学之间的差距一直是一个中心问题,其目标是建立基于GA的病毒进化计算模型。结果是一个称为虚拟病毒(VIV)的系统。 VIV整合了许多更合理的生物学机制,包括更灵活的基因型到表型作图。在VIV中,基因与位置无关,基因组的长度可以变化,并且可能包含非编码区以及重复或竞争性基因。利用VIV进行的初始计算研究已经揭示了一些生物学和计算领域都涌现的现象。在没有基于基因组长度的任何惩罚的情况下,VIV会开发具有长基因组的个体,并且与使用长度惩罚相比,VIV的性能也会更差(从解决问题的角度出发)。在固定的线性长度损失的情况下,基因组长度倾向于在进化的早期阶段急剧增加,然后下降到基于突变率的水平。高原基因组长度(即最终群体中个体的平均长度)通常响应于碱基突变率的增加而增加。当VIV融合时,个体中往往会有许多好的替代基因的拷贝。在整个进化过程中,我们观察到了许多在有活性和无活性基因之间切换的实例。这些观察结果支持非编码区充当VIV可以探索替代基因值的暂存空间的结论。这些结果代表了在理解遗传算法如何充分利用生物进化的力量和灵活性的同时,又为理解生物系统发展提供了更好的工具的积极一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号