首页> 外文OA文献 >An Analytics Based Architecture and Methodology for Collaborative Timetabling in Higher Education
【2h】

An Analytics Based Architecture and Methodology for Collaborative Timetabling in Higher Education

机译:基于分析的高等教育协作时间表的体系结构和方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Class scheduling in higher education, also known as “timetabling”, is a complex process that involves many people across an institution for several months every year, and literature on the topic has been rapidly evolving over the last 15 years. We propose architecture and methodology to enable the implementation of systems that can help users gain insight on non-trivial existing and emerging enrollment patterns that need to be considered for planning purposes, and to facilitate collaborative timetabling activities. University of Pittsburgh data on undergraduate enrollments during six recent fall terms is used to illustrate the proposed ideas. Core components are specified by: First, modeling the problem using Association Rule Analysis where the sets of courses that individual students take in an academic term are treated as transactions. This renders combinations of courses called itemsets. A new backtracking algorithm called MASAI is proposed to determine the maximum number of seats available per itemset. This corresponds to the identification of itemsets of interest as in the case at hand course itemsets with no seats available are primary targets. MASAI is a novel approach to the identification of itemsets of interest that uses information that is not available in transactional data to determine the maximum number of seats possible in each itemset. Second, in order to facilitate deeper analyses that consider the relationships between course itemsets, the problem is modeled as a multi-mode graph that incorporates information obtained with the Association Rule Analysis and MASAI. A Generalized Clique Percolation Method (GCPM) is proposed to enable the identification of overlapping and hierarchical communities in graphs/networks. GCPM is used to identify communities in the multi-mode graph, enabling the discovery of non-trivial enrollment patterns, and the identification of scheduling practices that limit the enrollment options for students. Third, the elements that would form the core of a socially translucent environment that is based on the previous components are discussed. This collaborative environment is intended to provide scheduling authorities with access to shared information on enrollment patterns and how decisions on scheduling of courses in their departments impact the overall institution’s schedule and the enrollment options for students.
机译:高等教育中的课程安排(也称为“时间表”)是一个复杂的过程,每年整个机构中都要有很多人参与,几个月中,涉及该主题的文献在过去15年中迅速发展。我们提出了体系结构和方法论,以实现能够帮助用户获得对不重要的现有和新兴入学模式的洞察力的系统,这些模式对于规划目的应予以考虑,并促进协作时间表活动。匹兹堡大学最近六个秋季学期的本科生入学数据用于说明所提出的想法。核心组件的指定方式如下:首先,使用关联规则分析对问题进行建模,其中将单个学生在一个学期中修读的课程集视为事务。这将提供称为项目集的课程组合。提出了一种称为MASAI的新回溯算法,用于确定每个商品集可用的最大座位数。这与识别感兴趣的项目集相对应,因为在手头课程中,没有可用座位的项目集是主要目标。 MASAI是一种用于识别感兴趣的项目集的新颖方法,该方法使用交易数据中不可用的信息来确定每个项目集中可能的最大座位数。其次,为了便于进行更深入的分析以考虑课程项目集之间的关系,将问题建模为多模式图,其中包含通过关联规则分析和MASAI获得的信息。提出了一种通用的集团渗透方法(GCPM)来识别图/网络中的重叠社区和分层社区。 GCPM用于识别多模式图中的社区,从而能够发现非平凡的入学模式,并确定可以限制学生入学选择的日程安排做法。第三,讨论了将构成基于先前组件的社会半透明环境的核心的元素。这种协作环境旨在为日程安排机构提供关于注册模式的共享信息,以及部门中课程安排的决定如何影响整个机构的日程安排和学生的注册选项。

著录项

  • 作者

    Sanchez Carlos;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号