首页> 外文OA文献 >Improving ChIP-seq peak-calling for functional co-regulator binding by integrating multiple sources of biological information
【2h】

Improving ChIP-seq peak-calling for functional co-regulator binding by integrating multiple sources of biological information

机译:通过整合多种生物学信息来改善ChIP-seq峰调用功能共调节剂的结合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2012 Osmanbeyoglu et al.; licensee BioMed Central Ltd. Background: Chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-seq) is increasingly being applied to study genome-wide binding sites of transcription factors. There is an increasing interest in understanding the mechanism of action of co-regulator proteins, which do not bind DNA directly, but exert their effects by binding to transcription factors such as the estrogen receptor (ER). However, due to the nature of detecting indirect protein-DNA interaction, ChIP-seq signals from co-regulators can be relatively weak and thus biologically meaningful interactions remain difficult to identify. Results: In this study, we investigated and compared different statistical and machine learning approaches including unsupervised, supervised, and semi-supervised classification (self-training) approaches to integrate multiple types of genomic and transcriptomic information derived from our experiments and public database to overcome difficulty of identifying functional DNA binding sites of the co-regulator SRC-1 in the context of estrogen response. Our results indicate that supervised learning with naïve Bayes algorithm significantly enhances peak calling of weak ChIP-seq signals and outperforms other machine learning algorithms. Our integrative approach revealed many potential ERα/SRC-1 DNA binding sites that would otherwise be missed by conventional peak calling algorithms with default settings. Conclusions: Our results indicate that a supervised classification approach enables one to utilize limited amounts of prior knowledge together with multiple types of biological data to enhance the sensitivity and specificity of the identification of DNA binding sites from co-regulator proteins.
机译:©2012 Osmanbeyoglu等;背景技术:染色质免疫沉淀与大规模并行测序(ChIP-seq)的结合越来越多地用于研究转录因子的全基因组结合位点。人们越来越了解共调节蛋白的作用机理,该蛋白不直接结合DNA,而是通过与诸如雌激素受体(ER)的转录因子结合而发挥其作用。然而,由于检测间接蛋白质-DNA相互作用的性质,来自共调节子的ChIP-seq信号可能相对较弱,因此生物学上有意义的相互作用仍然难以识别。结果:在这项研究中,我们调查并比较了不同的统计和机器学习方法,包括无监督,有监督和半监督分类(自我训练)方法,以整合从我们的实验和公共数据库中获得的多种类型的基因组和转录组信息,以克服在雌激素反应的情况下,难以确定辅助调节剂SRC-1的功能性DNA结合位点。我们的结果表明,采用朴素贝叶斯算法的监督学习可显着增强弱ChIP-seq信号的峰值调用,并且优于其他机器学习算法。我们的整合方法揭示了许多潜在的ERα/ SRC-1 DNA结合位点,否则,默认设置下的常规峰调用算法会遗漏这些位点。结论:我们的结果表明,一种监督分类方法使人们能够利用有限的先验知识以及多种类型的生物学数据来增强从共调节蛋白中鉴定DNA结合位点的敏感性和特异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号