首页> 外文OA文献 >A gas-surface interaction model for the numerical study of rocket nozzle flows over pyrolyzing ablative materials
【2h】

A gas-surface interaction model for the numerical study of rocket nozzle flows over pyrolyzing ablative materials

机译:热解烧蚀材料上火箭喷嘴流动数值研究的气-面相互作用模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ablative materials provide a widespread, reliable, and relatively low–cost way to manage the extremely high heat fluxes that are normally encountered in a wide variety of aerospace applications. Typically, both non–pyrolyzing carbon–based and pyrolyzing carbon– and silica–based materials are used with this intent in rocket nozzles. Unfortunately, during the rocket firing these materials undergo a consumption that modifies the nozzle internal contour increasing the nozzle throat area and causing a drop down of the chamber pressure that, ultimately, results in an overall rocket performance reduction. For this reason, it is important to advance the fundamental understanding of the nozzle erosion processes and to develop useful scientific tools in this subject area. To this aim, a comprehensive model that would allow the study of the behavior of different ablative materials in rocket nozzle environment accounting for surface ablation, pyrolysis gas in- jection and resin decomposition has been developed, tested and validated. The model relies on surface mass and energy balances and deals with the gas–surface interaction erosive phenomena, accurately solving the gas side, using a CFD ap- proach. Two different ablation models have been implemented to simulate both the erosion of carbon– and silica–based materials. The steady–state ablation approximation is used in order to estimate the solid conductive heat flux, as well as the pyrolysis gas mass flow rate, in a closed way and without requiring the accurate resolution of the material heating by means of a thermal response code. Firstly, the talk will address a thorough description of the theoretical/numerical model. Then, several simulations, from sub–scale to full–scale nozzles, will be presented and the results will be compared with the experimental results.
机译:烧蚀材料提供了一种广泛,可靠且成本相对较低的方法来管理各种航空航天应用中通常遇到的极高的热通量。通常,在火箭喷嘴中使用非热解碳基材料和热解碳基和二氧化硅基材料。不幸的是,在火箭发射过程中,这些材料的消耗改变了喷嘴的内部轮廓,从而增加了喷嘴的喉部面积,并使腔室压力下降,最终导致总体火箭性能下降。因此,重要的是要提高对喷嘴腐蚀过程的基本了解,并在该领域开发有用的科学工具。为此,已经开发,测试和验证了一个综合模型,该模型将能够研究火箭喷嘴环境中不同烧蚀材料的行为,从而说明表面烧蚀,热解气体注入和树脂分解。该模型依赖于表面质量和能量平衡,并利用CFD方法处理气体-表面相互作用的侵蚀现象,从而精确地解决了气体方面的问题。已经实施了两种不同的烧蚀模型,以模拟碳基和二氧化硅基材料的腐蚀。稳态烧蚀近似用于封闭的方式估算固体传导热通量以及热解气体的质量流量,而无需借助热响应代码来精确解析材料的加热。首先,本演讲将对理论/数值模型进行详尽的描述。然后,将进行从次比例喷嘴到全比例喷嘴的几种模拟,并将结果与​​实验结果进行比较。

著录项

  • 作者

    Turchi Alessandro;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号