首页> 外文OA文献 >Real Time Identification Of SSH Encrypted Application Flows by Using Cluster Analysis Techniques
【2h】

Real Time Identification Of SSH Encrypted Application Flows by Using Cluster Analysis Techniques

机译:利用聚类分析技术实时识别SSH加密的应用程序流

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The identification of application flows is a critical task in order to manage bandwidth requirements of different kind of services (i.e. VOIP, Video, ERP). As network security functions spread, an increasing amount of traffic is natively encrypted due to privacy issues (e.g. VPN). This makes ineffective current traffic classification systems based on ports and payload inspection, e.g. even powerful Deep Packet Inspection is useless to classify application flow carried inside SSH sessions. We have developed a real time traffic classification method based on cluster analysis to identify SSH flows from statistical behavior of IP traffic parameters, such as length, arrival times and direction of packets. In this paper we describe our approach and relevant obtained results. We achieve detection rate up to 99.5 % in classifying SSH flows and accuracy up to 99.88 % for application flows carried within those flows, such as SCP, SFTP and HTTP over SSH
机译:为了管理不同类型的服务(即VOIP,视频,ERP)的带宽需求,识别应用程序流是一项关键任务。随着网络安全功能的扩展,由于隐私问题(例如VPN),本机加密了越来越多的流量。这使得基于端口和有效载荷检查的当前流量分类系统无效,例如甚至功能强大的深度包检查也无法对SSH会话中承载的应用程序流进行分类。我们已经开发了一种基于群集分析的实时流量分类方法,可以根据IP流量参数的统计行为(例如长度,到达时间和数据包方向)来识别SSH流量。在本文中,我们描述了我们的方法和相关的获得的结果。在对SSH流量进行分类时,我们的检测率高达99.5%,而在这些流量中携带的应用程序流(如SCP,SFTP和SSH上的HTTP)的准确性高达99.88%

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号