首页> 外文期刊>Journal of visual communication & image representation >A survey on image data analysis through clustering techniques for real world applications
【24h】

A survey on image data analysis through clustering techniques for real world applications

机译:通过聚类技术对现实应用进行图像数据分析的调查

获取原文
获取原文并翻译 | 示例

摘要

A huge amount of image data is being collected in real world sectors. Image data analytics provides information about important facts and issues of a particular domain. But, it is challenging to handle voluminous, unstructured and unlabeled image collection. Clustering provides groups of homogeneous unlabeled data. Therefore, it is used quite often to access the interesting data easily and quickly. Image clustering is a process of partitioning image data into clusters on the basis of similarities. Whereas, features extracted from images are used for the computation of similarities among them. In this paper, significant feature extraction approaches and clustering methods applied on the image data from nine important applicative areas are reviewed. Medical, 3D imaging, oceanography, industrial automation, remote sensing, mobile phones, security and traffic control are considered applicative areas. Characteristics of images, suitable clustering approaches for each domain, challenges and future research directions for image clustering are discussed.
机译:现实世界中正在收集大量图像数据。图像数据分析提供有关特定领域的重要事实和问题的信息。但是,处理大量,非结构化和未标记的图像集具有挑战性。聚类提供同类未标记数据的组。因此,它经常用于轻松快速地访问有趣的数据。图像聚类是基于相似度将图像数据划分为聚类的过程。而从图像中提取的特征用于计算它们之间的相似度。本文综述了九个重要应用领域对图像数据的重要特征提取方法和聚类方法。医疗,3D成像,海洋学,工业自动化,遥感,移动电话,安全和交通控制被视为适用领域。讨论了图像的特征,适用于每个领域的聚类方法,挑战以及图像聚类的未来研究方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号