首页> 外文OA文献 >Autism Spectrum Disorder Diagnosis Using Sparse Graph Embedding of Morphological Brain Networks
【2h】

Autism Spectrum Disorder Diagnosis Using Sparse Graph Embedding of Morphological Brain Networks

机译:基于形态学脑网络的稀疏图嵌入的自闭症谱系障碍诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder involving a complex cognitive impairment that can be difficult to diagnose early enough. Much work has therefore been done investigating the use of machine-learning techniques on functional and structural connectivity networks for ASD diagnosis. However, networks based on the morphology of the brain have yet to be similarly investigated, despite research findings that morphological features, such as cortical thickness, are affected by ASD. In this paper, we first propose modelling morphological brain connectivity (or graph) using a set of cortical attributes, each encoding a unique aspect of cortical morphology. However, it can be difficult to capture for each subject the complex pattern of relationships between morphological brain graphs, where each may be affected simultaneously or independently by ASD. In order to solve this problem, we therefore also propose the use of high-order networks which can better capture these relationships. Further, since ASD and normal control (NC) high-dimensional connectomic data might lie in different manifolds, we aim to find a low-dimensional representation of the data which captures the intrinsic dimensions of the underlying connectomic manifolds, thereby allowing better learning by linear classifiers. Hence, we propose the use of sparse graph embedding (SGE) method, which allows us to distinguish between data points drawn from different manifolds, even when they are too close to one another. SGE learns a similarity matrix of the connectomic data graph, which then is used to embed the high-dimensional connectomic features into a low-dimensional space that preserves the locality of the original data. Our ASD/NC classification results outperformed several state-of-the-art methods including statistical feature selection, and local linear embedding methods.
机译:自闭症谱系障碍(ASD)是一种神经发育障碍,涉及复杂的认知障碍,可能难以及早诊断。因此,已经进行了许多工作来调查在功能和结构连接网络上使用机器学习技术进行ASD诊断的情况。然而,尽管有研究发现,大脑皮层厚度等形态特征受ASD影响,但基于大脑形态的网络仍需进行类似的研究。在本文中,我们首先提出使用一组皮质属性对形态学大脑的连通性(或图形)进行建模,每个属性都对皮质形态学的一个独特方面进行编码。但是,可能很难为每个受试者捕获形态学脑图之间关系的复杂模式,其中每个脑电图可能同时或独立地受到ASD的影响。为了解决这个问题,因此,我们还建议使用可以更好地捕获这些关系的高阶网络。此外,由于ASD和正常控制(NC)的高维连接词组数据可能位于不同的流形中,因此我们的目标是找到数据的低维表示形式,该数据可以捕获底层连接体歧管的内在维度,从而允许通过线性更好的学习分类器。因此,我们建议使用稀疏图嵌入(SGE)方法,该方法允许我们区分从不同流形绘制的数据点,即使它们彼此之间太近也是如此。 SGE学习连接词组数据图的相似性矩阵,然后将其用于将高维连接词组特征嵌入到保留原始数据局部性的低维空间中。我们的ASD / NC分类结果优于几种最新方法,包括统计特征选择和局部线性嵌入方法。

著录项

  • 作者

    Morris Carrie; Rekik Islem;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号