首页> 外文OA文献 >Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis
【2h】

Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis

机译:螺旋藻亚砷酸S-腺苷甲硫氨酸甲基转移酶诱导甲基化

摘要

Arsenic-contaminated water is a serious hazard for human health. Plankton plays a critical role in the fate and toxicity of arsenic in water by accumulation and biotransformation. Spirulina platensis (S. platensis), a typical plankton, is often used as a supplement or feed for pharmacy and aquiculture, and may introduce arsenic into the food chain, resulting in a risk to human health. However, there are few studies about how S. platensis biotransforms arsenic. In this study, we investigated arsenic biotransformation by S. platensis. When exposed to arsenite (As(III)), S. platensis accumulated arsenic up to 4.1 mg/kg dry weight. After exposure to As(III), arsenate (As(V)) was the predominant species making up 64% to 86% of the total arsenic. Monomethylarsenate (MMA(V)) and dimethylarsenate (DMA(V)) were also detected. An arsenite S-adenosylmethionine methyltransferase from S. platensis (SpArsM) was identified and characterized. SpArsM showed low identity with other reported ArsM enzymes. The Escherichia coli AW3110 bearing SparsM gene resulted in As(III) methylation and conferring resistance to As(III). The in vitro assay showed that SpArsM exhibited As(III) methylation activity. DMA(V) and a small amount of MMA(V) were detected in the reaction system within 0.5 hr. A truncated SpArsM derivative lacking the last 34 residues still had the ability to methylate As(III). The three single mutants of SpArsM (C59S, C186S, and C238S) abolished the capability of As(III) methylation, suggesting the three cysteine residues are involved in catalysis. We propose that SpArsM is responsible for As methylation and detoxification of As(III) and may contribute to As biogeochemistry. (C) 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
机译:砷污染的水对人体健康构成严重危害。浮游生物通过积累和生物转化在水中砷的命运和毒性中起着至关重要的作用。螺旋藻(S. platensis)是一种典型的浮游生物,通常用作药物和水产养殖的补充剂或饲料,并可能将砷引入食物链中,从而危害人体健康。但是,很少有关于柏木如何生物转化砷的研究。在这项研究中,我们调查了S. platensis的砷生物转化。当暴露于亚砷酸盐(As(III))时,S。platensis积累的砷高达4.1 mg / kg干重。暴露于砷(III)后,砷(As(V))是占主导地位的物种,占总砷的64%至86%。还检测到单甲基砷酸盐(MMA(V))和二甲基砷酸盐(DMA(V))。鉴定并鉴定了来自S. platensis(SpArsM)的亚砷酸盐S-腺苷甲硫氨酸甲基转移酶。 SpArsM与其他报道的ArsM酶显示出较低的同一性。带有SparsM基因的大肠杆菌AW3110导致As(III)甲基化并赋予对As(III)的抗性。体外测定表明,SpArsM表现出As(III)甲基化活性。在0.5小时内在反应系统中检测到DMA(V)和少量的MMA(V)。缺少最后34个残基的截短的SpArsM衍生物仍然具有甲基化As(III)的能力。 SpArsM的三个单个突变体(C59S,C186S和C238S)取消了As(III)甲基化的能力,这表明三个半胱氨酸残基参与了催化。我们建议SpArsM负责As(III)的As甲基化和解毒,并可能有助于As生物地球化学。 (C)2016中国科学院生态环境研究中心。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号