首页> 外文OA文献 >Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study
【2h】

Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study

机译:硫酸铁(III)和聚硫酸铁混凝去除地下水中砷的比较及机理研究

摘要

Elevated arsenic (As) in groundwater poses a great threat to human health. Coagulation using mono-and poly-Fe salts is becoming one of the most cost-effective processes for groundwater As removal. However, a limitation comes from insufficient understanding of the As removal mechanism from groundwater matrices in the coagulation process, which is critical for groundwater treatment and residual solid disposal. Here, we overcame this hurdle by utilizing microscopic techniques to explore molecular As surface complexes on the freshly formed Fe flocs and compared ferric(III) sulfate (FS) and polyferric sulfate (PFS) performance, and finally provided a practical solution in As-geogenic areas. FS and PFS exhibited a similar As removal efficiency in coagulation and coagulation/filtration in a two-bucket system using 5 mg/L Ca(ClO)(2). By using the two-bucket system combining coagulation and sand filtration, 500 L of As-safe water ( 10 mu g/L) was achieved during five treatment cycles by washing the sand layer after each cycle. Fe k-edge X-ray absorption near-edge structure (XANES) and As k-edge extended X-ray absorption fine structure (EXAFS) analysis of the solid residue indicated that As formed a bidentate binuclear complex on ferrihydrite, with no observation of scorodite or poorly-crystalline ferric arsenate. Such a stable surface complex is beneficial for As immobilization in the solid residue, as confirmed by the achievement of much lower leachate As (0.9 mu g/L-0.487 mg/L) than the US EPA regulatory limit (5 mg/L). Finally, PFS is superior to FS because of its lower dose, much lower solid residue, and lower cost for As-safe drinking water. (C) 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
机译:地下水中砷(As)含量升高对人类健康构成巨大威胁。使用单铁盐和多铁盐进行混凝已成为去除地下水As的最具成本效益的方法之一。但是,局限性来自对凝聚过程中地下水基质中As去除机理的了解不足,这对于地下水处理和残留固体处置至关重要。在这里,我们利用微观技术克服了这一障碍,在新形成的Fe絮凝体上探索了As分子表面配合物,并比较了硫酸铁(III)和聚硫酸铁(PFS)的性能,最后提供了一种可行的As-geogenic解决方案地区。在使用5 mg / L Ca(ClO)(2)的双桶系统中,FS和PFS在凝结和凝结/过滤中的去除率相似。通过使用结合了凝结和砂滤的两桶系统,在五个处理周期中,通过在每个处理周期后洗净砂层,可获得500 L的As-safe水(<10μg / L)。 Fe k边缘X射线吸收近边缘结构(XANES)和As k边缘扩展X射线吸收精细结构(EXAFS)对固体残留物的分析表明,As在水铁矿上形成了双齿双核络合物,没有观察到臭葱石或低结晶砷酸铁。这种稳定的表面复合物有利于将As固定在固体残留物中,这一点已得到证实,与美国EPA法规限值(5 mg / L)相比,沥出液As(0.9μg / L-0.487 mg / L)低得多。最后,PFS优于FS,因为它的剂量较低,固体残留物少得多,并且As-safe饮用水的成本更低。 (C)2015中国科学院生态环境研究中心。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号