首页> 外文OA文献 >Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery
【2h】

Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery

机译:使用超高分辨率图像比较基于对象的土地覆被分类的机器学习分类器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study evaluates and compares the performance of four machine learning classifiers-support vector machine (SVM), normal Bayes (NB), classification and regression tree (CART) and K nearest neighbor (KNN)-to classify very high resolution images, using an object-based classification procedure. In particular, we investigated how tuning parameters affect the classification accuracy with different training sample sizes. We found that: (1) SVM and NB were superior to CART and KNN, and both could achieve high classification accuracy (> 90%); (2) the setting of tuning parameters greatly affected classification accuracy, particularly for the most commonly-used SVM classifier; the optimal values of tuning parameters might vary slightly with the size of training samples; (3) the size of training sample also greatly affected the classification accuracy, when the size of training sample was less than 125. Increasing the size of training samples generally led to the increase of classification accuracies for all four classifiers. In addition, NB and KNN were more sensitive to the sample sizes. This research provides insights into the selection of classifiers and the size of training samples. It also highlights the importance of the appropriate setting of tuning parameters for different machine learning classifiers and provides useful information for optimizing these parameters.
机译:这项研究评估并比较了四种机器学习分类器的性能-支持向量机(SVM),标准贝叶斯(NB),分类和回归树(CART)和K最近邻(KNN)-使用基于对象的分类过程。特别是,我们研究了调整参数如何影响不同训练样本大小的分类准确性。我们发现:(1)SVM和NB优于CART和KNN,并且都可以实现较高的分类精度(> 90%); (2)调整参数的设置极大地影响了分类准确性,尤其是对于最常用的SVM分类器而言;调整参数的最佳值可能会随训练样本的大小而略有不同; (3)当训练样本的大小小于125时,训练样本的大小也极大地影响了分类的准确性。增加训练样本的大小通常会导致所有四个分类器的分类精度增加。此外,NB和KNN对样本大小更为敏感。这项研究提供了对分类器选择和训练样本大小的见解。它还强调了针对不同的机器学习分类器适当设置调整参数的重要性,并提供了优化这些参数的有用信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号