首页> 外文OA文献 >Nonlinear vibrations of circular cylindrical shells with different boundary conditions and geometric imperfections
【2h】

Nonlinear vibrations of circular cylindrical shells with different boundary conditions and geometric imperfections

机译:具有不同边界条件和几何缺陷的圆柱壳的非线性振动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Geometrically nonlinear forced vibrations of circular cylindrical shells with different boundary conditions are investigated. The Sanders-Koiter and Donnell nonlinear shell theories are used to calculate the elastic strain energy. The shell displacements (longitudinal, circumferential and radial) are expanded by means of a double mixed series: harmonic functions for the circumferential variable and two different formulations for the longitudinal variable; these two different formulations are: (a) Chebyshev orthogonal polynomials and (b) trigonometric functions. The same formulation is applied to study different boundary conditions; results are presented for simply supported, clamped and cantilever shells. The analysis is performed in two steps: first a liner analysis is performed to identify natural modes, which are then used in the nonlinear analysis as generalized coordinates. The Lagrangian approach is applied to obtain a system of nonlinear ordinary differential equations. Different expansions involving from 14 to 52 generalized coordinates, associated with natural modes of simply supported, clamped-clamped and cantilever shells are used to study the convergence of the solution. The nonlinear equations of motion are studied by using arclength continuation method and bifurcation analysis. Numerical responses obtained in the spectral neighborhood of the lowest natural frequency are compared with results available in literature. Influence of geometrical imperfections studied as well.
机译:研究了具有不同边界条件的圆柱壳的几何非线性强迫振动。 Sanders-Koiter和Donnell非线性壳理论用于计算弹性应变能。壳体位移(纵向,圆周和径向)通过双重混合序列扩展:圆周函数的谐波函数和纵向变量的两种不同公式;这两个不同的公式是:(a)Chebyshev正交多项式和(b)三角函数。相同的公式用于研究不同的边界条件。给出了简单支撑,夹紧和悬臂壳体的结果。该分析分两个步骤进行:首先执行线性分析以识别自然模式,然后在自然分析中将其用作广义坐标。拉格朗日方法用于获得非线性常微分方程组。涉及从14到52个广义坐标的不同展开,以及简单支撑,夹固和悬臂壳的自然模式相关的展开,用于研究解的收敛性。利用弧长连续法和分岔分析研究了非线性运动方程。将在最低固有频率的频谱邻域中获得的数值响应与文献中可获得的结果进行比较。还研究了几何缺陷的影响。

著录项

  • 作者

    Kurylov Yevgeniy;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 Inglese
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号