首页> 外文OA文献 >Discretization of Asymptotically Stable Stationary Solutions of Delay Differential Equations with a Random Stationary Delay
【2h】

Discretization of Asymptotically Stable Stationary Solutions of Delay Differential Equations with a Random Stationary Delay

机译:具平稳时滞的时滞微分方程的渐近稳定平稳解的离散化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We prove the existence of a stationary random solution to a delay random ordinary differential system which attracts all other solutions in both pullback and forwards senses. The equation contains a one-sided dissipative Lipschitz term without delay, while the random delay appears in a globally Lipschitzone. The delay function only needs to be continuous in time. Moreover, we also prove that the split implicit Euler scheme associated to the random delay differential system generates a discrete time random dynamical system which also possesses a stochastic stationary solution with the same attracting property, and which converges to the stationary solution of the delay randomdifferential equation pathwise as the stepsize goes to zero.
机译:我们证明了时滞随机常微分系统的平稳随机解的存在,该系统在回撤和前向意义上都吸引了所有其他解。该方程式包含无耗散的一侧耗散Lipschitz项,而随机延迟出现在全局Lipschitzone中。延迟功能只需要在时间上连续即可。此外,我们还证明了与随机时滞微分系统相关的分裂隐式欧拉格式产生了离散时间随机动力系统,该系统也具有具有相同吸引性质的随机平稳解,并且收敛到时滞随机微分方程的平稳解。步长为零时顺向移动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号