We prove the existence of a stationary random solution to a delay random ordinary differential system which attracts all other solutions in both pullback and forwards senses. The equation contains a one-sided dissipative Lipschitz term without delay, while the random delay appears in a globally Lipschitzone. The delay function only needs to be continuous in time. Moreover, we also prove that the split implicit Euler scheme associated to the random delay differential system generates a discrete time random dynamical system which also possesses a stochastic stationary solution with the same attracting property, and which converges to the stationary solution of the delay randomdifferential equation pathwise as the stepsize goes to zero.
展开▼