首页> 外文OA文献 >Numerical and experimental study of microwave-excited microplasma and micronozzle flow for a microplasma thruster
【2h】

Numerical and experimental study of microwave-excited microplasma and micronozzle flow for a microplasma thruster

机译:微波激发微等离子体和微喷嘴推进器微喷嘴流动的数值和实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plasma and aerodynamic features have been investigated for a microplasma thruster of electrothermal type using azimuthally symmetric microwave-excited microplasmas. The thruster developed consisted of a microplasma source 1.5 mm in diameter, 10 mm long with a rod antenna on axis, and a converging-diverging micronozzle 1 mm long with a throat 0.2 mm in diameter. The feed or propellant gas employed was Ar at pressures of 10–50 kPa with flow rates of 10–70 SCCM (SCCM denotes standard cubic centimeter per minute at STP) and the surface wave-excited plasmas were established by 4.0 GHz microwaves at powers of ≤ 6 W. Numerical analysis was made for the plasma and flow properties by developing a self-consistent, two-dimensional model, where a two-temperature fluid model was applied to the entire region through the microplasma source to the micronozzle (or through subsonic to supersonic); in the former, an electromagnetic model based on the finite difference time-domain approximation was also employed for analysis of microwaves interacting with plasmas. In experiments, optical emission spectroscopy was employed with a small amount of additive gases of H2 and N2, to measure the plasma electron density and gas temperature in the microplasma source around the top of the microwave antenna, just upstream of the micronozzle inlet; in practice, the numerical analysis exhibited a maximum thereabout for the microwave power density absorbed, plasma density, and gas temperature. The Stark broadening of H Balmer line and the vibronic spectrum of N2 second positive band indicated that the electron density was in the range of (3–12)×10[19] m[−3] and the gas or rotational temperature was in the range of 700–1000 K. The thrust performance was also measured by using a microthrust stand with a combination of target and pendulum methods, giving a thrust in the range of 0.2–1.4 mN, a specific impulse in the range of 50–80 s, and a thrust efficiency in the range of 2%–12%. These experimental results were consistent with those of numerical analysis, depending on microwave power and gas flow rate.
机译:已经使用方位对称的微波激发微等离子体研究了电热型微等离子体推进器的等离子体和空气动力学特征。开发的推进器由直径为1.5 mm,长为10 mm,轴上为杆状天线的微等离子体源和长为1 mm,直径为0.2 mm的喉的会聚发散微喷嘴组成。所使用的进料或推进剂气体为Ar,压力为10-50 kPa,流速为10-70 SCCM(SCCM表示在STP时每分钟标准立方厘米),表面波激发的等离子体是由4.0 GHz微波以功率为≤6 W.通过建立自洽的二维模型对等离子体和流动特性进行数值分析,其中通过微等离子体源到微喷嘴(或通过亚音速)对整个区域应用双温流体模型超音速);在前者中,还采用了基于时域有限差分的电磁模型来分析微波与等离子体的相互作用。在实验中,采用光发射光谱法和少量的H2和N2附加气体,以测量微波喷嘴顶部附近微喷嘴入口上游的微等离子体源中的等离子体电子密度和气体温度。实际上,数值分析显示出最大的吸收微波功率密度,等离子体密度和气体温度。 H Balmer线的Stark展宽和N2第二正带的振动光谱表明,电子密度在(3-12)×10 [19] m [-3]范围内,而气体或旋转温度在推力性能也通过使用结合了目标和摆法的微推力台架进行测量,推力范围为0.2–1.4 mN,特定脉冲范围为50–80 s ,推力效率在2%–12%的范围内。这些实验结果与数值分析的结果一致,具体取决于微波功率和气体流速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号