首页> 外文OA文献 >Sparsity and connectivity of medial graphs: Concerning two edge-disjoint Hamiltonian paths in planar rigidity circuits
【2h】

Sparsity and connectivity of medial graphs: Concerning two edge-disjoint Hamiltonian paths in planar rigidity circuits

机译:中间图的稀疏性和连通性:关于平面刚度电路中的两条边不相交的哈密顿路径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A simple undirected graph G=(V, E) is a rigidity circuit if |E|=2|V|−2 and |EG[X]|≤2|X|−3 for every X⊂V with 2≤|X|≤|V|−1, where EG[X] denotes the set of edges connecting vertices in X. It is known that a rigidity circuit can be decomposed into two edge-disjoint spanning trees. Graver et al. (1993) asked if any rigidity circuit with maximum degree 4 can be decomposed into two edge-disjoint Hamiltonian paths. This paper presents infinitely many counterexamples for the question. Counterexamples are constructed based on a new characterization of a 3-connected plane graph in terms of the sparsity of its medial graph and a sufficient condition for the connectivity of medial graphs.
机译:如果| E | = 2 | V | −2和| EG [X] |≤2| X | −3对于2≤| X的每个X⊂V,则简单的无向图G =(V,E)是刚性电路。 |≤| V | -1,其中EG [X]表示连接X中顶点的边的集合。众所周知,刚度电路可以分解为两个不相交的生成树。 Graver等。 (1993年)问是否可以将最大度数为4的刚性电路分解为两条边不相交的哈密顿路径。本文为这个问题提供了无数的反例。根据3连通平面图的中间图的稀疏性和中间图的连通性的充分条件的新特征,构造了反例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号