首页> 外文OA文献 >On Modelling, System Identification and Control of Servo-Systems with a Flexible Load
【2h】

On Modelling, System Identification and Control of Servo-Systems with a Flexible Load

机译:柔性负载伺服系统的建模,系统辨识与控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
机译:本研究是通过两种不同的伺服系统完成的。在第一个系统中,确定了伺服液压系统,然后由模糊增益调度控制器对其进行控制。第二个伺服系统是一个电磁线性电动机,用于抑制机械振动和参考模型的位置跟踪,分别通过使用神经网络和自适应反推控制器进行了研究。以下是对研究方法的一些描述。电子液压伺服系统(EHSS)在工业中通常使用。这类系统本质上是非线性的,它们的动力学方程具有几个未知参数。系统识别是分析动力学系统的前提。最有前途的新型进化算法之一是用于解决全局优化问题的差分进化(DE)。在研究中,提出了DE算法来处理具有变量边界限制的非线性约束函数,以找到具有柔性负载的伺服液压系统的最佳参数。无论参数的初始条件如何,DE都能保证快速收敛和准确的解决方案。在过去的几十年中,液压伺服系统的控制一直是研究的重点。这些系统本质上是非线性的,通常很难控制。由于使用相同的增益来更改系统参数将导致过冲,甚至会损失系统稳定性。这些设备的高度非线性特性使其成为应用不同类型的复杂控制器的理想对象。该研究与使用模糊增益调度的柔性负载伺服液压系统的定位控制的二阶模型参考有关。在本研究中,为了补偿液压系统中阻尼的不足,使用了加速度反馈。为了比较结果,使用了具有前馈加速度和伸展和缩回不同增益的pcontroller。讨论了控制器的设计程序和实验结果。结果表明,使用模糊增益调度控制器可以减少位置参考跟踪的误差。研究的第二部分是在永磁线性同步电动机(PMLSM)上完成的。在这项研究中,研究了一种递归神经网络补偿器,用于抑制具有柔性负载的PMLSM中的机械振动。线性电动机由常规的PI速度控制器控制,并且通过使用混合递归神经网络来抑制柔性机构的振动。采用差分进化策略和卡尔曼滤波方法避免局部极小问题,分别估计系统状态。首先利用Matlab Simulink建立的非线性仿真模型设计提出的控制方法,然后在实际的试验台上实现。所提出的方法令人满意地工作并且成功地抑制了振动。在研究的最后一部分中,开发了一种非线性负载控制方法,用于带有柔性负载的PMLSM。控制器的目的是尽快将柔性负载跟踪到所需的位置参考,而不会产生棘手的振荡。控制方法基于自适应反步算法,其稳定性由Lyapunov稳定性定理保证。控制器中所需的系统状态通过使用卡尔曼滤波器进行估算。所提出的控制器在线性电动机测试驱动器中实施和测试,并给出了响应。

著录项

  • 作者

    Yousefi Hassan;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号