首页> 外文OA文献 >Generalized Differential Evolution for Global Multi-Objective Optimization with Constraints
【2h】

Generalized Differential Evolution for Global Multi-Objective Optimization with Constraints

机译:具有约束的全局多目标优化的广义差分演化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this thesis work is to develop and study the Differential Evolution Algorithm for multi-objective optimization with constraints. Differential Evolution is an evolutionary algorithm that has gained in popularity because of its simplicity and good observed performance. Multi-objective evolutionary algorithms have become popular since they are able to produce a set of compromise solutions during the search process to approximate the Pareto-optimal front.The starting point for this thesis was an idea how Differential Evolution, with simple changes, could be extended for optimization with multiple constraints and objectives. This approach is implemented, experimentally studied, and further developed in the work. Development and study concentrates on the multi-objective optimization aspect.The main outcomes of the work are versions of a method called Generalized Differential Evolution. The versions aim to improve the performance of the method in multi-objective optimization. A diversity preservation technique that is effective and efficient compared to previous diversity preservation techniques is developed. The thesis also studies the influence of control parameters of Differential Evolution in multi-objective optimization. Proposals for initial control parameter value selection are given. Overall, the work contributes to the diversity preservation of solutions in multi-objective optimization.
机译:本文工作的目的是开发和研究用于约束的多目标优化的差分进化算法。差异进化是一种进化算法,由于其简单性和良好的观察性能而广受欢迎。由于多目标进化算法能够在搜索过程中产生一组折衷解以逼近帕累托最优前沿,因此已变得很流行。本文的出发点是一个想法,即如何通过简单的变化就能实现差分进化。扩展了具有多个约束和目标的优化。在工作中实施,实验研究并进一步发展了这种方法。开发和研究集中于多目标优化方面。工作的主要成果是一种称为“广义差分进化”方法的版本。这些版本旨在提高该方法在多目标优化中的性能。开发了一种与先前的多样性保存技术相比有效且高效的多样性保存技术。本文还研究了差分进化控制参数对多目标优化的影响。给出了初始控制参数值选择的建议。总的来说,这项工作有助于在多目标优化中保持解决方案的多样性。

著录项

  • 作者

    Kukkonen Saku;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号