Let U subset of R(2) be an open subset and f : U -> R(2) be an arbitrary local homeomorphism with Fix(f) = {p}. We compute the fixed point indices of the iterates of f at p, i(R2)(f(k), p), and we identify these indices in dynamical terms. Therefore, we obtain a sort of Poincare index formula without differentiability assumptions. Our techniques apply equally to both orientation preserving and orientation reversing homeomorphisms. We present some new results, especially in the orientation reversing case.ud
展开▼
机译:令R(2)的U子集为开放子集,而f:U-> R(2)为Fix(f)= {p}的任意局部同胚。我们计算f在p,i(R2)(f(k),p)处的迭代的不动点索引,并以动态术语识别这些索引。因此,我们获得了一种无需微分假设的Poincare指数公式。我们的技术同样适用于方向保持和方向反转同胚。我们提出了一些新结果,尤其是在方向反转情况下。 ud
展开▼