首页> 外文OA文献 >Paediatric pharmacovigilance: use of pharmacovigilance data mining algorithms for signal detection in a safety dataset of a paediatric clinical study conducted in seven African countries
【2h】

Paediatric pharmacovigilance: use of pharmacovigilance data mining algorithms for signal detection in a safety dataset of a paediatric clinical study conducted in seven African countries

机译:儿科药物警戒:在七个非洲国家/地区进行的儿科临床研究的安全数据集中,使用药物警戒数据挖掘算法进行信号检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BACKGROUND: Pharmacovigilance programmes monitor and help ensuring the safe use of medicines which is critical to the success of public health programmes. The commonest method used for discovering previously unknown safety risks is spontaneous notifications. In this study we examine the use of data mining algorithms to identify signals from adverse events reported in a phase IIIb/IV clinical trial evaluating the efficacy and safety of several Artemisinin-based combination therapies (ACTs) for treatment of uncomplicated malaria in African children. METHODS: We used paediatric safety data from a multi-site, multi-country clinical study conducted in seven African countries (Burkina Faso, Gabon, Nigeria, Rwanda, Uganda, Zambia, and Mozambique). Each site compared three out of four ACTs, namely amodiaquine-artesunate (ASAQ), dihydroartemisinin-piperaquine (DHAPQ), artemether-lumefantrine (AL) or chlorproguanil/dapsone and artesunate (CD+A). We examine two pharmacovigilance signal detection methods, namely proportional reporting ratio and Bayesian Confidence Propagation Neural Network on the clinical safety dataset. RESULTS: Among the 4,116 children (6-59 months old) enrolled and followed up for 28 days post treatment, a total of 6,238 adverse events were reported resulting into 346 drug-event combinations. Nine signals were generated both by proportional reporting ratio and Bayesian Confidence Propagation Neural Network. A review of the manufacturer package leaflets, an online Multi-Drug Symptom/Interaction Checker (DoubleCheckMD) and further by therapeutic area experts reduced the number of signals to five. The ranking of some drug-adverse reaction pairs on the basis of their signal index differed between the two methods. CONCLUSIONS: Our two data mining methods were equally able to generate suspected signals using the pooled safety data from a phase IIIb/IV clinical trial. This analysis demonstrated the possibility of utilising clinical studies safety data for key pharmacovigilance activities like signal detection and evaluation. This approach can be applied to complement the spontaneous reporting systems which are limited by under reporting.
机译:背景:药物警戒计划监视并帮助确保药物的安全使用,这对公共卫生计划的成功至关重要。发现以前未知的安全风险的最常用方法是自发通知。在这项研究中,我们检查了数据挖掘算法的使用,以从IIIb / IV期临床试验中报告的不良事件中识别信号,该临床试验评估了几种基于青蒿素的联合疗法(ACTs)治疗非洲儿童单纯性疟疾的疗效和安全性。方法:我们使用了在七个非洲国家(布基纳法索,加蓬,尼日利亚,卢旺达,乌干达,赞比亚和莫桑比克)进行的多站点,多国临床研究的儿科安全性数据。每个站点比较了四种ACT中的三种,即阿莫地喹-青蒿琥酯(ASAQ),双氢青蒿素-哌喹(DHAPQ),青蒿素-卢美替林(AL)或氯丙胍/氨苯砜和青蒿琥酯(CD + A)。我们在临床安全数据集上研究了两种药物警戒信号检测方法,即比例报告率和贝叶斯置信度传播神经网络。结果:在入组并在治疗后随访28天的4116名儿童(6至59个月大)中,据报道共有6238例不良事件,导致346种药物事件组合。通过比例报告比率和贝叶斯置信度传播神经网络生成了九个信号。审查了制造商的包装传单,在线多药征症状/相互作用检查器(DoubleCheckMD)以及治疗领域专家的进一步意见,将信号数量减少到五个。某些药物不良反应对基于其信号指数的排名在两种方法之间有所不同。结论:使用来自IIIb / IV期临床试验的汇总安全性数据,我们的两种数据挖掘方法同样能够产生可疑信号。这项分析证明了利用临床研究安全性数据进行关键药物警戒活动(如信号检测和评估)的可能性。此方法可用于补充受报告不足限制的自发报告系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号