首页> 外文OA文献 >Enhanced Lanczos Algorithms for Solving Systems of Linear Equations with Embedding Interpolation and Extrapolation
【2h】

Enhanced Lanczos Algorithms for Solving Systems of Linear Equations with Embedding Interpolation and Extrapolation

机译:嵌入插值和外推法求解线性方程组的改进Lanczos算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lanczos-type algorithms are prone to breaking down before convergence to an acceptable solution is achieved. This study investigates a number of ways to deal with this issue. In the first instance, we investigate the quality of three types of restarting points in the restarting strategy when applied to a particular Lanczos-type algorithm namely Orthodir. The main contribution of the thesis, however, is concerned with using regression as an alternative way to deal with breakdown. A Lanczos-type algorithm is run for a number of iterations and then stopped, ideally, just before breakdown occurs. The sequence of generated iterates is used to build up a regression model that captures the characteristic of this sequence. The model is then used to generate new iterates that belong to that sequence. Since the iterative process of Lanczos is circumvented, or ignored, while using the model to find new points, the breakdown issue is resolved, at least temporarily, unless convergence is achieved. This new approach, called EIEMLA, is shown formally, through extrapolation, that it generates a new point which is at least as good as the last point generated by the Lanczos-type algorithm prior to stoppage. The remaining part of the thesis reports on the implementation of EIEMLA sequentially and in parallel on a standard parallel machine provided locally and on a Cloud Computing platform, namely Domino Data Lab. Through these implementations, we have shown that problems with up to $10^6$ variables and equations can be solved with the new approach. Extensive numerical results are included in this thesis. Moreover, we point out some important issues for further investigation.
机译:Lanczos型算法易于崩溃,无法收敛到可接受的解决方案。这项研究调查了解决此问题的多种方法。首先,我们将重新启动策略中的三种类型的重新启动点应用于特定的Lanczos型算法(即Orthodir)时,研究其质量。然而,本文的主要贡献在于使用回归作为替代方法来处理故障。 Lanczos类型的算法需要运行多次迭代,然后理想地在发生故障之前停止。生成的迭代序列用于建立回归模型,以捕获该序列的特征。然后,该模型用于生成属于该序列的新迭代。由于绕过或忽略了Lanczos的迭代过程,因此在使用模型查找新点时,除非实现收敛,否则至少在短期内解决了故障问题。通过外推形式正式显示了这种称为EIEMLA的新方法,它生成的新点至少与Lanczos型算法在停止之前生成的最后点一样好。本文的其余部分报告了在本地提供的标准并行计算机上以及在云计算平台(即Domino数据实验室)上按顺序和并行执行EIEMLA的情况。通过这些实现,我们表明,使用新方法可以解决$ 10 ^ 6 $变量和方程式的问题。本文包括了广泛的数值结果。此外,我们指出了一些重要的问题,需要进一步研究。

著录项

  • 作者

    Maharani Maharani;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号