首页> 外文OA文献 >Effect of radiance-to-reflectance transformation and atmosphere removal on maximum likelihood classification accuracy of high-dimensional remote sensing data
【2h】

Effect of radiance-to-reflectance transformation and atmosphere removal on maximum likelihood classification accuracy of high-dimensional remote sensing data

机译:辐射反射率变换和大气去除对高维遥感数据最大似然分类精度的影响

摘要

Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.
机译:许多用于高维遥感数据的分析算法要求将遥感辐射光谱转换为近似反射率,以便与实验室反射光谱库进行比较。但是,在最大似然分类中,将遥感光谱与训练样本进行了比较,因此转换为反射率可能有帮助,也可能没有帮助。本文研究了几种辐射率到反射率变换对最大似然分类精度的影响。我们表明经验线方法,LOWTRAN7,平场校正,单光谱方法和内部平均反射率都是非奇异仿射变换,并且非奇异仿射变换对判别分析特征提取和最大似然分类没有影响准确性。 (仿射变换是具有可选偏移的线性变换。)由于大气去除程序(ATREM)和对数残差方法不是仿射变换,因此使用机载可见/红外成像光谱仪(AVIRIS)数据进行了实验以确定效果这些变换对最大似然分类精度的影响。 ATREM和对数残差法转换后的数据的平均分类精度略低于原始辐射率数据的精度。由于辐射率到反射率的转换允许将遥感光谱与实验室反射率光谱进行直接比较,因此它们在标记最大似然分类所需的训练样本时非常有用,但是这些转换对效果几乎没有影响,或者根本没有影响。判别分析和最大似然分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号