首页> 外文OA文献 >Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: An eigenvalue analysis
【2h】

Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: An eigenvalue analysis

机译:双曲初值-边值问题的半离散逼近的稳定性:特征值分析

摘要

A hyperbolic initial-boundary-value problem can be approximated by a system of ordinary differential equations (ODEs) by replacing the spatial derivatives by finite-difference approximations. The resulting system of ODEs is called a semidiscrete approximation. A complication is the fact that more boundary conditions are required for the spatially discrete approximation than are specified for the partial differential equation. Consequently, additional numerical boundary conditions are required and improper treatment of these additional conditions can lead to instability. For a linear initial-boundary-value problem (IBVP) with homogeneous analytical boundary conditions, the semidiscrete approximation results in a system of ODEs of the form du/dt = Au whose solution can be written as u(t) = exp(At)u(O). Lax-Richtmyer stability requires that the matrix norm of exp(At) be uniformly bounded for O less than or = t less than or = T independent of the spatial mesh size. Although the classical Lax-Richtmyer stability definition involves a conventional vector norm, there is no known algebraic test for the uniform boundedness of the matrix norm of exp(At) for hyperbolic IBVPs. An alternative but more complicated stability definition is used in the theory developed by Gustafsson, Kreiss, and Sundstrom (GKS). The two methods are compared.
机译:通过用有限差分近似代替空间导数,可以通过常微分方程组(ODE)近似双曲初值问题。所得的ODE系统称为半离散近似。一个复杂的事实是,空间离散近似所需的边界条件要比偏微分方程所规定的更多。因此,需要附加的数值边界条件,对这些附加条件的不当处理可能会导致不稳定。对于具有齐次分析边界条件的线性初始边界值问题(IBVP),半离散逼近形成形式为du / dt = Au的ODE系统,其解可表示为u(t)= exp(At) u(O)。 Lax-Richtmyer稳定性要求exp(At)的矩阵范数与O小于或等于t小于或等于T的范围一致,而与空间网格大小无关。尽管经典的Lax-Richtmyer稳定性定义涉及传统的矢量范数,但是对于双曲IBVP的exp(At)矩阵范数的一致有界性,尚无已知的代数检验。由Gustafsson,Kreiss和Sundstrom(GKS)开发的理论中使用了另一种但更复杂的稳定性定义。比较了两种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号