首页> 外文OA文献 >Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices
【2h】

Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices

机译:用于模拟非均质半导体器件的非抛物线流体动力公式

摘要

Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion.
机译:流体力学模型正成为用于小型设备和其他设备的流行设计工具,在这些设备中,高能量效应可主导运输。当前大多数流体动力学模型都使用抛物线带近似来获得相当简单的守恒方程。在流体力学装置仿真中考虑带结构效应的兴趣已经开始增长,因为由于带内非抛物线状态的分布,抛物线模型无法完全描述现有技术设备的传输。本文介绍了两种不同的非抛物线形式的流体动力学模型,适用于非均质半导体器件的仿真。第一个公式使用凯恩色散关系(hk)(exp 2)/ 2m = W(1 + alpha(W))。第二种公式对色散关系使用幂定律((hk)(exp 2)/ 2m = xW(sup y))。使用第一个公式的流体力学模型依赖于二项式展开来获得具有闭合形式系数的矩方程。这限制了模型有效的能量范围。幂律公式很容易产生类似于使用抛物线带近似获得的闭合形式系数。但是,拟合参数(x,y)仅在有限的能量范围内有效。讨论了带非抛物线的物理意义,以及两种非抛物线模型的优缺点和近似值。随附的论文基于三种色散关系描述了器件仿真:抛物线形,凯恩色散和功率低色散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号